

MULTI-DIMENSIONAL RANGE QUERYING USING A MODIFICATION OF
THE SKIP GRAPH

THESIS

Gregory J. Brault, Captain, USAF

AFIT/GE/ENG/07-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GE/ENG/07-04

MULTI-DIMENSIONAL RANGE QUERYING USING A MODIFICATION OF
THE SKIP GRAPH

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Gregory J. Brault, B.S.E.E.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GE/ENG/07-04

MULTI-DIMENSIONAL RANGE QUERYING USING A MODIFICATION OF
THE SKIP GRAPH

Gregory J. Brault, B.S.E.E.

Captain, USAF

Approved:

/ SIGNED /__________________________ 5 Mar 07
Barry E. Mullins, Ph.D. (Chairman) Date

/ SIGNED /__________________________ 5 Mar 07
Christopher B. Mayer, Maj, USAF (Member) Date

/ SIGNED /__________________________ 5 Mar 07
Rusty O. Baldwin, Ph.D. (Member) Date

AFIT/GE/ENG/07-04

Abstract

Skip graphs are an application layer-based distributed routing data structure that

can be used in a sensor network to facilitate user queries of data collected by the sensor

nodes. This research investigates the impact of a proposed modification to the skip graph

proposed by Aspnes and Shah.

Nodes contained in a standard skip graph are sorted by their key value into

successively smaller groups based on random membership vectors computed locally at

each node. The proposed modification inverts the node key and membership vector roles,

where group membership is computed deterministically and node keys are computed

randomly.

Both skip graph types are modeled in Java. Range query and node mobility

simulations are performed. The number of skip graph levels, total node count, and query

precision are varied for query simulations; number of levels and total node count is varied

for the mobility simulation. Query performance is measured by the number of skip graph

messages used to execute the query while mobility performance is measured by the

number of messages transmitted to maintain skip graph coherence.

When the number of levels is limited and query precision is low, or when query

precision is matched by the number of levels in the skip graph and total network node

counts are increased, the modified skip graph transmits fewer messages to execute the

query. Furthermore, fewer update messages are needed to fix lost node references due to

mobile nodes.

iv

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. Barry Mullins,

for his guidance and support throughout the course of this thesis effort. I would also like

to thank Capt Christopher Augeri, whose insight and guidance was invaluable throughout

the research process.

 Gregory J. Brault

v

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents... vi

List of Figures .. viii

List of Tables ...x

Vita ……………………………………………………………………………………….xi

I. Introduction ..1

1.1 Motivation ..2

1.2 Overview ..2

1.3 Thesis Layout ...3

II. Literature Review..4

2.1 Distributed Sensor Networks..4

2.2 Skip Lists and Skip Graphs ..5

2.3 Distributed Querying ..15

2.4 Mobility ..26

2.5 Related Work..27

2.6 Summary...28

III. Methodology ..29

3.1 Problem Statement..29

3.2 System Scope..31

3.3 System Model...33

3.4 Performance Metrics ..38

vi

3.5 Parameters ..40

3.6 Factors ..42

3.7 Experimental Design ..45

3.8 Evaluation Technique...46

3.9 Summary...47

IV. Analysis and Results..48

4.1 Model Validation..48

4.2 Analysis of Query Execution..53

4.3 Analysis of Mobility...69

4.4 Summary...72

V. Conclusions and Recommendations ..73

5.1 Problem Summary ..73

5.2 Summary of Conclusions Drawn From Results ...73

5.3 Significance of Research ..75

5.4 Recommendations for Future Research..75

5.5 Summary...76

Appendix A: Java Source Code ...77

Bibliography ..122

vii

List of Figures

Figure Page

1. Doubly-Linked List... 6

2. Skip List .. 7

3. Searching For '2' In A Skip List. Grey Nodes Are Involved In The Search................. 10

4. Skip Graph .. 11

5. Searching For '2' In A Skip Graph .. 13

6. Sweep/Raster-Scan Space-Filling Curve .. 16

7. Z-order Space-Filling Curve ... 17

8. Z-order Bit Interleaving .. 17

9. Z-order Hierarchy.. 19

10. Range Query (2 <= key <= 4) In A Standard Skip Graph .. 20

11. Geographical Layout of Nodes ... 22

12. Multi-Dimensional Skip Graph... 23

13. Range Query “0010X” In A Multi-Dimensional Skip Graph..................................... 25

14. Node Mobility... 26

15. SkipGraph Class.. 34

16. Node Class .. 35

17. View Snapshot .. 37

18. Summary of M-V-C UML.. 38

19. Two Range Queries... 41

20. Good Query (Right) Versus Bad Query (Left) ... 43

viii

21. Top-Left Quadrant Query ... 49

22. Query Node Count, Actual Versus Expected. Circular Points Represent Expected

Node Counts. Square Points Represent Measured Node Counts 52

23. 10XXXXXXXXXX Query Results.. 55

24. 1001XXXXXXXX Query Results.. 57

25. 100110XXXXXX Query Results ... 59

26. 10011000XXXX Query Results ... 62

27. 1001100011XX Query Results ... 64

28. 100110001101 Query Results... 66

29. Mobility Results.. 70

ix

List of Tables

Table Page

1. Summary of Query Factors... 44

2. Summary of Node Mobility Factors ... 44

3. Model Validation Results, 4 Level Skip Graph .. 53

4. 10XXXXXXXXXX Mean Node Contacts 95% Confidence Intervals 56

5. 1001XXXXXXXX Mean Node Contacts 95% Confidence Intervals.......................... 58

6. 100110XXXXXX Mean Node Contacts 95% Confidence Intervals............................ 60

7. 10011000XXXX Mean Node Contacts 95% Confidence Intervals 63

8. 1001100011XX Mean Node Contacts 95% Confidence Intervals 65

9. 100110001101 Mean Node Contacts 95% Confidence Intervals 67

10. Summary of Query Performances... 68

x

Vita

Greg Brault was born in Warren, Michigan in 1980 and graduated from Henry

Ford II High School in 1998. He was commissioned as a Second Lieutenant through the

Air Force Reserve Officer Training Corps (AFROTC) at Michigan Technological

University in May 2002. At Michigan Tech he received a Bachelor of Science degree in

Electrical Engineering. His first assignment was with Air Force Research Laboratories,

Space Vehicles Directorate at Kirtland AFB, Albuquerque, NM. There he performed

basic research in satellite microelectronics and responsive space technologies, aiming to

reduce the timeline for satellite deployment. Captain Brault was selected to attend the Air

Force Institute of Technology (AFIT) and reported to Wright-Patterson AFB, Dayton,

OH in March 2005. Captain Brault is assigned to the Air Force Information Warfare

Center at Lackland AFB, San Antonio, TX upon graduation from AFIT.

xi

MULTI-DIMENSIONAL RANGE QUERYING USING A MODIFICATION OF
THE SKIP GRAPH

I. Introduction

Colonel Smith asks, “I need to know how many vehicles passed within a five

square kilometer area centered at 33 20 N, 44 26 E within the last 24 hours.”

The lead Distributed Sensor Network (DSN) operator responds, “Right away, sir.”

Five seconds pass after the operator inputs the query. “Looks like four tanks and nine

trucks.”

This vignette is a glimpse into the future that illustrates the power and capabilities

of DSNs. A DSN, in the context of this research, consists of tiny, battery-powered nodes

equipped with a variety of sensors that periodically gather information about their

surroundings, and either forward the data to surrounding nodes, or store it locally for

future use.

The DSN operator in the above scenario issued a query to the network asking all

nodes within a two-dimensional geographical bound to report any vehicle movement

within the last 24 hours. In this example, the two dimensions being queried are latitude

and longitude. Several issues must be addressed to efficiently execute multi-dimensional

range queries such as this. Skip graphs can address some of those issues. This research

investigates how a modification to a previously developed skip graph impacts multi-

dimensional range query performance.

1

1.1 Motivation

An unyielding focus of the Department of Defense has been to increase our ability

to gather as much situational information as fast as possible. Increased levels of

information awareness equates to better decision making processes [PWW02]. Battlefield

commanders privy to specific tactical information are better able to formulate battle

plans. Satellites provide quite detailed information regarding troop movements and other

in-theater information, given the proper orbit and sensors. If those conditions are not met,

then there can be long lead times before a particular satellite can fulfill the requirements.

DSNs provide a cheaper, faster alternative. DSNs can even provide more accurate

information about the battlefield environment (audio, vibration) than a satellite can in

certain situations.

There are a plethora of civilian applications for DSNs as well. Environmental and

species monitoring, agriculture, production and delivery, and health care are just a few of

the niches where this technology is deployable [RoM04].

1.2 Overview

Skip graphs are an application layer-based distributed routing protocol designed

to process queries for a distributed network. The original skip graph [AsS03] searches for

and queries a specific single-dimensional key or range of keys.

In a standard skip graph, each node in the network contains a key (e.g.,

geographical position) and is also associated with a membership vector (a random,

arbitrary value). The membership vectors determine how nodes are grouped together

which affects how fast a node can be found during a search.

2

An alternate method of organizing a skip graph is proposed in this research.

Instead of grouping nodes based on randomized membership vectors, membership

vectors are based on some multi-dimensional property. It is proposed that an alternative

grouping will allow multi-dimensional queries such as a geographical range query to

perform better.

This research implements both of these types of skip graphs in software, and

investigates the impact the proposed change has on multi-dimensional queries. A

corollary investigation is also performed on the impact the change has on mobility in a

DSN.

1.3 Thesis Layout

This chapter introduces the topic of this research. Chapter 2 provides the

background information, as well as related work in this area. Chapter 3 discusses the

methodology used to configure and execute the simulations used to gather data. Chapter 4

analyzes and discusses the results of those simulations. Lastly, Chapter 5 presents the

research conclusions and recommends avenues for further research.

3

II. Literature Review

This chapter presents relevant background information related to this research.

Section 2.1 discusses DSNs and some of their applications. Section 2.2 presents skip lists

and skip graphs, the distributed data structures in which the range queries execute.

Section 2.3 discusses elements of distributed queries as they apply to skip graphs,

including dimensional reduction techniques such as the z-order curve, and discusses how

multi-dimensional queries are executed within the context of skip graphs. Section 2.4

discusses node mobility issues and how mobility impacts the integrity of a skip graph.

Finally, Section 2.5 discusses related work forming the basis for skip graphs, and an

application in which skip graphs are used.

2.1 Distributed Sensor Networks

In the context of this research, a DSN is a collection of independent, low-power

devices distributed over some geographic area which have capabilities for inter-device

communication. These nodes are populated with various sensors such as temperature,

infrared/radio frequency, audio and vibration which collect information about the

surrounding environment. These nodes record and store data for a period of time and then

distribute that information to surrounding nodes at a later time. Data is transmitted within

the network wirelessly using a routing protocol such as Ad-hoc On-demand Distance

Vector (AODV) [PBD03].

Many challenges must be overcome to utilize the full potential of these networks.

The challenge this research focuses on is how to index the massive amount of data

collected by a large network so it may be efficiently queried.

4

These networks are assumed to be so large that it is too costly to collect and

process each node’s data at a central, external location. While an external location may be

viable for low node count networks, it does not scale [Aug05]. It is unreasonable for a

single node to collect and store all of this data considering these networks can be quite

large, on the order of thousands of nodes. Therefore, efficient mechanisms must be in

place to index and query this data in a timely manner.

2.2 Skip Lists and Skip Graphs

Skip lists and skip graphs are application layer-based distributed data structures

which are searched for a key or a set of keys. A key at a node represents a piece of

information associated with that node. The key can be scalar or multi-dimensional. An

example of a scalar key is the output of a temperature sensor; the key value is directly

mapped to the temperature data. An example of a multi-dimensional key is the

geographical position of a node; the latitudinal and longitudinal coordinates comprise the

two dimensions of the node’s position.

A single dimensional range query might inquire about any nodes with temperature

sensor readings between two values. A multi-dimensional range query might inquire

about any nodes with geographical coordinates within a certain latitudinal-longitudinal

area, as in the scenario in Chapter 1.

Skip lists and skip graphs are an extension of a more common data structure, the

linked list. There are two types of linked lists, singly- and doubly-linked. A singly-linked

list is a series of nodes linked to a single adjacent node via a reference to that node’s

location. In the doubly-linked list, nodes not only have a reference to a successor node,

5

but also to a predecessor node. Figure 1 is a graphical representation of a doubly-linked

list. In contrast to a fixed-length data structure such as an array, linked lists can be

dynamically resized by simply modifying affected nodes’ references to other nodes. This

method is used for both node insertion and deletion.

2 3 4 7 10 12 17 20

Figure 1. Doubly-Linked List

2.2.1 Skip Lists

A skip list is a balanced tree data structure organized as an aggregation of levels

each containing an increasingly sparse ordered doubly-linked list [Pug90]. The base level

L0 contains just one ordered linked list complete with all nodes (as in Figure 1), and in

each successive level i, each node in level i-1 appears in level i independently with some

fixed probability p.

Figure 2 shows a skip list. Each circle represents a node, and the number shown

inside each node represents both the node’s identification and key value. Horizontal links

between nodes represent application-layer links in the physical sensor network. When a

link exists between two nodes, those two nodes are able to communicate with each other

using the routing protocol specified for the sensor network’s routing layer. For example,

in L1, node 7 maintains references to nodes 3 and 17, whereas in L0, node 7 maintains

references to nodes 4 and 10, respectively. For a particular node, maintaining several

6

links to different nodes at different skip list levels is beneficial when key searches are

performed, as the following sections discuss.

L 0

L 1

L 2

L 3

L 0

L 1

L 2

L 3

3 4 7 10 12 17

3 7 17

3 7

20

7

2

2

Figure 2. Skip List

Nodes do not maintain full copies of the skip list. As Figure 2 illustrates, node 20

does not have any knowledge about the link between nodes 2 and 3. If a search is

received by node 20 for a key of 3, node 20 simply forwards it on to node 17, because 3

is less than 17. Thus, node 20 can be assured the search is advancing in the proper

direction because the lists are ordered.

Skip lists are distributed data structures and so as a search is being executed, the

search parameters are transferred from node to node. Each transfer of the search is meant

to locate a node that contains the closest match to the search parameter.

Linked lists at higher levels offer “express lanes” to traverse the full list located at

L0 [AsS03]. A search is issued to a node in the highest level and continues to transfer

within a linked list on the same level until one of three conditions is met. The following

paragraphs explain each of these conditions.

7

The first condition arises if a search arrives at a node at a particular level and that

node is at the end of the list. The node still needs to forward the search further in the

appropriate direction, but it cannot because it does not have a reference to a node in the

direction that the search needs to proceed. For example, suppose a search for a key of 4

issued at node 7 in the skip list of Figure 2. The initial level associated with the search is

the top-most level, L3. Node 7 has no neighbor node references at level 3, and so the

search remains at node 7, but continues at the next lower level, L2.

The second condition arises if a search is supposed to transfer to a neighbor node,

but it is evident that the key associated with the neighbor node is beyond the requested

search parameter. Consider the previous search for a key of 4. After the search drops

down from L3 to L2, it still resides at node 7. At L2, node 7 now has a node reference in

the direction that the search should progress in, because the search parameter of 4 is less

than the key at node 7. However, this neighbor node has a key of 3, which would advance

the search too far. If this is not handled properly, the search will loop between nodes 7

and 3. To alleviate this, the search drops to the next lowest level, L1.

The third and final condition is if the search finds a node with a key matching the

search parameter. At this point, the search has completed. Continuing our search for key

4, we can see that the second condition is met again at L1, and so the search is forced to

drop down to the next and lowest level, L0. In this level, node 7 has a new neighbor node

in the direction that the search should progress in, and this node happens to have the key

that is being searched for. Consider another search for a key of 5. The entire search

process would have been identical up to this point. However, in this example, since the

8

search is in L0 and the second condition has been met (node 4 is beyond the search

parameter), then the search can determine that the slot between nodes 4 and 7 in the base

list L0 is where the search should end. This information is needed when nodes are added

to a skip list; the inserted node needs to know where in the base list it is being added (i.e.,

who its neighbors are).

Consider another brief example of a search for a key of 2 in the skip list shown in

Figure 3. This figure is the exact same skip list of Figure 2, but is annotated with arrows

to clarify which level the search is being transferred to. The search begins at node 7 in the

top-most level L3, and since node 7 is the only node in that level, the search must drop

down to L2. In L2, node 7 has a new reference to node 3. At this point, the search

transfers over to node 3 because a key of 2 is being searched, and since the nodes are

ordered in each list at each level, the search can determine that is the proper direction to

progress. After the search has transferred to node 3, it must drop down to L1 because

node 3 is at the end of the list. At this point, node 3 now has a reference to node 2, and so

the search transfers over. It can stop here, because node 2 contains the key that is being

searched. On average, no more than
p−1

1 nodes are searched on average per level,

giving an average search time of [AsS03]

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

p
p

nO
1log)1(

1log (1)

9

where p is the probability of node in level i appearing in level i+1, and n is the total

number of nodes in the skip list.

L 0

L 1

L 2

L 3

L 0

L 1

L 2

L 3

3 4 7 10 12 17

3 7 17

3 7

20

7

2

2

Figure 3. Searching For '2' In A Skip List. Grey Nodes Are Involved In The Search

 Skip lists perform well as a local data structure, but they pose significant

drawbacks for a distributed implementation such as a sensor network. A skip list lacks

redundancy, which reduces overall robustness – a desirable sensor network feature. In our

example, if node 7 fails, all communication links at all levels in the skip list are severed.

The search will not be able to progress anywhere because node 7 was essential in

maintaining large portions of the skip graph at the lower levels. That node becomes a

single point of failure for the network, a situation that should be avoided.

Contention issues also arise due to the existence of relatively few nodes in higher

levels of the skip list. In our example above, node 7 is a hot spot that is a central access

point for all searches. This will quickly diminish the power levels for that particular node

10

since any search must be transmitted through this node – another undesirable feature in

sensor networks.

2.2.2 Skip Graphs

A solution to these drawbacks is a skip graph. Figure 4 shows a skip graph that

parallels the skip lists of Figure 2 and Figure 3. A skip graph is similar to a skip list in

that L0 still contains a single ordered linked list containing all of the nodes in the graph.

However, a skip graph diverges from a skip list as higher levels are constructed.

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

110 010 001

110 101

110

2 3 4 7 17

3

10 12

7 17

3 7

20
010 111 001 101 010

111

111

2 4 10 12 20
010 001 010 001 010

17
101

2 10 20
010 010 010

4 12

001 001

3 7

1112

17
101

2 10 20
010 010 010

4 12

001 001110

2

2

2

2 2 2

2

2

2

2

2

2 2 2

2

2

2 2

2

2 2

2

2

2 2 2 2 2 2 2 2

Figure 4. Skip Graph

In a skip graph, all nodes exist at all levels. There may be multiple linked lists at

level i > 0, and every node is in one and only one of these lists at any particular level. A

membership vector m(x) holds which list node x belongs to at a particular level i.

11

The membership vector m(x) is a bit sequence, computed randomly and

independently within each node. A node keeps the same membership vector at each level.

At the lowest level, every node is contained in the same linked list, and therefore the

notion of a membership vector has no impact on which linked list a node resides in.

However, as the number of levels increase, nodes are grouped into linked lists based on a

membership vector prefix.

Consider the skip graph illustrated in Figure 4. L1 separates L0’s linked list into

two lists, where the first bit in each node’s membership vector is the bit that determines

which list that node belongs. L2 takes this one step further, separating nodes into groups

of linked lists with the first two bits of the membership vector determining which of the

groups the node belongs. For example, in Figure 4 at L2, node 3 and node 7 are contained

in the same linked list, because the first two bits of both of their membership vectors are

112.

Searching for a key value in a skip graph is essentially the same process as it is in

a skip list. In a skip graph, however, the search may start at any node in the top-most

level. This alleviates top-level contention issues that pose a significant hot spot threat to

nodes in a skip list. Figure 5 illustrates how there are at least three different paths for a

search for a key value of 2 to find its way to the destination, with each path starting at a

different node in the top level L3. The solid line route begins the search at node 7, and

takes two hops (node 7→node 3→node 2). The rectangular dotted line route begins at

node 10, and happens to find the search parameter immediately, taking only one hop

12

(node 10→node 2). The circular dotted line route begins at node 12, and takes two hops

to find node 2 (node 12→node 4→node 2), the same as the solid line route.

 Skip graphs also alleviate single points of failure that existed in skip lists

[AsS03]. Figure 5 illustrates that if node 7 were to fail, a new search could be initiated at

any other node in the top level; the previous examples detailed searches beginning at

node 7, node 10, or node 12.

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

110 010 001

110 101

110

2 3 4 7 17

3

10 12

7 17

3 7

20
010 111 001 101 010

111

111

2 4 10 12 20
010 001 010 001 010

17
101

2 10 20
010 010 010

4 12

001 001

3 7

1112

17
101

2 10 20
010 010 010

4 12

001 001110

2

2

2

2 2 2

2

2

2

2

2

2 2 2

2

2

2 2

2

2 2

2

2

2 2 2 2 2 2 2 2

 Search starts at node 7 Search starts at node 10 Search starts at node 12

Figure 5. Searching For '2' In A Skip Graph

2.2.3 Multi-Dimensional Skip Graph

Section 2.2.2 presented the construct and searching mechanisms of a skip graph.

That version of a skip graph will herein be referenced as a standard skip graph. Recall

13

that in a standard skip graph, each node is associated with a key value and its

membership vector. The key value is single-dimensional, and may be derived directly

from a scalar sensor reading such as temperature, or a linearization of a multi-

dimensional attribute such as the node’s geographical location. Section 2.3.1 describes

one of these linearization techniques – the z-order curve. Also recall that nodes in a

standard skip graph compute their own random membership vector m(x) independently,

and it is this vector that determines which linked-list a particular node is a member of for

each level.

This research modifies the standard skip graph, herein referenced as a multi-

dimensional skip graph. While a standard skip graph can search for multi-dimensional

keys (linearized into a single dimension using the z-order curve), nodes are grouped into

random membership vectors. Nodes in a multi-dimensional skip graph compute a random

key value, but the membership vectors are computed deterministically based on multi-

dimensional information. For example, the membership vector may be computed from

the linearization of the two-dimensional geographical position information; in a standard

skip graph this information would have been used to compute node keys. The random

key values computed by nodes in a multi-dimensional skip graph are synonymous to the

randomly computed membership vectors of a standard skip graph. The randomization of

key values is needed because multi-dimensional skip graphs no longer have randomized

membership vectors. Some form of randomization is needed in any type of skip graph as

specified in [AsS03]. Essentially, the roles of key values and membership vectors have

been reversed.

14

A primary goal of this research is to determine whether this role reversal impacts

query performance. If a majority of the queries issued in a DSN are of a multi-

dimensional nature, such as returning temperature readings from all nodes within a

certain geographical boundary, then grouping nodes within each level of the skip graph

based on that multi-dimensional data may decrease the time it takes to find the set of

nodes pertaining to the query.

2.3 Distributed Querying

A primary reason for sensor networks is to gather data. A query is injected into

the network at an arbitrary node, and that query must propagate throughout the network

and reach all of the nodes that should respond to that query. A skip graph facilitates these

queries. Each node maintains its portion of the skip graph independently. When a query

arrives at a particular node, that node forwards it on to other nodes based on the level the

query is presently at (like the level of a key search as discussed in Section 2.2.1) and who

the neighbors are for that node at that level. Section 2.3.1 presents background

information regarding z-ordering, a type of Space-Filling-Curve (SFC). Sections 2.3.2

and 2.3.3 present how standard and multi-dimensional skip graphs execute range queries.

2.3.1 Space-Filling Curves

To simplify analysis, many disciplines use dimensional reduction techniques to

linearize a k-dimensional space to a single dimension. This allows for all points in a two-

dimensional or three-dimensional space to be “flattened” into a single linear series of

points with a total ordering. A bounded 2-D geographical area may be linearized by

drawing a continuous line throughout the bounds, thereby “filling the space” [Aug06].

15

There are several methods for traversing a bounded area to linearize a 2-D space.

The simplest method is a straightforward concatenation of the two dimensions, and then

sorting the resulting values. For instance, Figure 6 shows what the SFC would look like

when using this simple sweep, or raster-scan method of 2-D linearization.

 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Figure 6. Sweep/Raster-Scan Space-Filling Curve
Note that the sorted concatenation of each of the box values follows the sweeping

line, starting from the bottom: 00,01,…,06,07,10,11,…,16,17,… and so forth. While this

is a simple and quick way to linearize a 2-D space into 1-D scalar values, there are other

algorithms better suited for a geographical indexing application.

Figure 7 shows another SFC, the z-order. Its name stems from the z-like pattern it

makes as it traverses the bounded area. This hierarchical curve is also called a Lebesgue

curve, named after the French mathematician Henri Lebesgue (1875-1941) [Haw90].

Figure 7 shows how the z-pattern possesses similarity as one zooms in or out. This is an

important feature and is discussed later in this section. A rigorous mathematical analysis

of this curve can be found in Chapter 5 of [Sag94].

16

 000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

Figure 7. Z-order Space-Filling Curve

The z-order scalar value is used throughout this research to represent the

geographical position of the nodes in the skip graph. A feature of the z-order curve is that

the points along the line are constructed by interleaving the bits of the each of the

dimensions. Figure 8 shows how the point (3, 0) can be expressed as a linearized z-order

value. The axes in Figure 7 are listed in binary to help illustrate this process.

Z-order value (binary): 0010102

(x,y) coordinate (binary): (0112, 0002)

(x,y) coordinate (decimal): (3,0)

Figure 8. Z-order Bit Interleaving

Starting at the bottom-left grid location and following the line yields an

interleaved count of 000 000, 000 001, 000 010,…,011 111, 100 000,…, 111 111. So, as

17

Figure 8 illustrates, a node within the coordinate grid of (3,0) will have a z-order value of

011 (3) interleaved with 000 (0) with a result of 00 10 10.

This interleaved value is the most significant bits of the z-order value of any node

located within that grid location. If higher precision geographical position information

specifies a node further, any node within that coordinate grid will have a z-order

beginning with that prefix. This is an important property as the queries executed in this

research return all nodes with a particular z-order prefix.

A z-order curve is hierarchical. For instance, the range of coordinates for the

bottom left quadrant of the grid in Figure 7 is x:= (000 – 011), y:= (000 – 011), which

equates to a z-order range of (0000002 – 0011112). The common prefix in this range of

values is 002. Therefore, any z-ordered coordinate value of a node whose prefix matches

that value falls within that quadrant. Likewise, the range of the top-right sub-quadrant of

this quadrant is x := (010 – 011), y := (010 – 011), which equates to a z-order range of

(0011002 – 0011112). The common prefix here is 00112. This illustrates an interesting

property of z-order ranges. To find the prefix of any quadrant, you can hierarchically

build it one sub-quadrant at a time.

For example, Figure 9 shows three levels of the hierarchy. In this example, to

build the z-order prefix for a node having coordinates within the small square at

(001,110), start with the highest level quadrant 01 (upper left-hand quadrant of the full

grid). Then, recursively expand into the appropriate quadrants until you reach the level

that matches the length of the desired prefix. In this example, the next level’s quadrant is

01 (upper left-hand quadrant within the previous upper left-hand quadrant). The next and

18

final quadrant is 10 (lower right-hand quadrant within the previous upper left-hand

quadrant). The combined z-order prefix then becomes 010110.

000 001 010 011 100 101 110 111

000

001

010

011
100

101

110

111 01 11
00 10

11

00 10

00 10

11

Figure 9. Z-order Hierarchy

The same result is obtained if the bits of each dimension (x, y) were interleaved.

Following the pattern from Figure 8, the coordinate (001, 110) yields a z-order of

010110. It should be noted that 010110 is just the prefix of the z-order value of any node

residing in that particular area. This research uses the notation “XX” to refer to “don’t

cares”. For instance, 010110XXXXXX is the same as 010110, and both mean the z-order

(prefix) denoting a particular area of interest.

2.3.2 Querying Using Standard Skip Graphs

Section 2.2.2 discusses the constructs of a standard skip graph and illustrates how

a key search may be performed. Querying using standard skip graphs is a simple

extension to a key search. Range queries are particularly efficient to execute using a skip

graph, and this research focuses on those types of queries. Since each level in the skip

graph contains an ordered list of nodes, the querying process is quite simple.

Each list is sorted based on node key values. The key must correspond with the

type of data being queried. As mentioned earlier, this key may be single-dimensional or a

19

linearization of multi-dimensional information. In a range query, the desired result is the

set of all nodes in the skip graph that contain a key value within the specified range. To

accomplish this, a search is performed for any node with a key value within that range.

Once found, the query can drop down to the lowest level L0 and traverse the base list in

both directions until a key value that falls outside of the desired range is found. At this

point, the query knows it can terminate since the base list contains all nodes in the skip

graph. Figure 10 illustrates this process; the range query is 2 <= key <= 4.

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

110 010 001

110 101

110

2 3 4 7 17

3

10 12

7 17

3 7

20
010 111 001 101 010

111

111

2 4 10 12 20
010 001 010 001 010

17
101

2 10 20
010 010 010

4 12

001 001

3 7

1112

17
101

2 10 20
010 010 010

4 12

001 001110

2

2

2

2 2 2

2

2

2

2

2

2 2 2

2

2

2 2

2

2 2

2

2

2 2 2 2 2 2 2 2

Figure 10. Range Query (2 <= key <= 4) In A Standard Skip Graph

In Figure 10, a range query is injected into the network at node 7. The intent of

this query is to contact all nodes with key values within the range of 2 and 4, inclusive.

Since the query range falls below the value of the key at node 7, and node 7 has no

20

references to any other nodes at L3, the query must drop down to level L2. At this point,

node 7 now has a reference to node 3, and so the query transfers over to it. Node 3’s key

value (3) falls within the specified queried range, so the query can drop down to the base

level L0 at node 3 and advance in both directions, ensuring all nodes within the query

range (2 <= key <= 4) are contacted. The query stops (as indicated by the X in L0) when it

finds a node in L0 that has a key value (7) outside of the query range. In this case, that

node happens to be the same node the query started with, node 7.

2.3.3 Querying Using Multi-Dimensional Skip Graphs

A multi-dimensional skip graph has the exact same construct as a standard skip

graph. Nodes are collected into ordered linked lists at each level of the skip graph.

However, the process of putting nodes into membership vectors is quite different which

further implies a different querying mechanism is needed. The query is no longer

searching for matching node keys – the query is searching for matching membership

vectors.

Recall that in a standard skip graph, keys are deterministically produced from

some scalar or multi-dimensional information. Within the context of this research, those

key values happen to be the z-order value of the node’s geographical coordinates.

Membership vectors are randomly chosen and each node is grouped into a particular

linked list at each level based on some prefix of the membership vector.

Also recall that a multi-dimensional skip graph is different in that node keys are

chosen randomly, and it is the membership vector that contains the multi-dimensional

information. The membership vector is deterministically created from the z-order value of

21

the node’s geographical coordinates, much like the keys in a standard skip graph. Figure

11 illustrates a set of nodes in various geographical positions. The grid layout is similar to

that of Figure 9. The circles represent nodes, and the numbers within the circles are the

nodes identity.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111 01 11

00 10

11

00 10

00 10

11

2

3

4

7

10

12

17

20

Figure 11. Geographical Layout of Nodes

Figure 12 is the complete multi-dimensional skip graph based on the node layout

in Figure 11. The bit sequences below each node in the skip graph are the membership

vectors. They are computed from the z-order linearization of each node’s geographical

coordinates, based on the coordinate system of Figure 11. The prefix of the membership

vector that determines which list a node belongs is underlined. The prefix matching

increases by two bits each successive level because the number of dimensions being

linearized is two: latitude and longitude.

22

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

010101 000001 110011

2 3 4 7 17

3

10 12

7 17

3 7

20
001000 010101 001000 101001 111110

2 4 10 12 20

17
2 10 20 4

12

3 7 17
2 10 20 4

12

2 2 2 2 2 2 2 2

001000 2

001000 2

001000 2

010101 2

010101 2

010101 2

001000 2

001000 2

001000 2

010101 2

010101 2

010101 2

000001 2

000001 2

000001 2

110011 2

110011 2

110011 2

101001 2

101001 2

101001 2

111110 2

111110 2

111110 2

Figure 12. Multi-Dimensional Skip Graph

A query is injected at a particular node as in a standard skip graph. However,

instead of the query starting at the topmost level, the query begins at the base level L0 and

traverses in both directions. The query traverses the base list until it finds a node that has

an L1 membership vector prefix that matches the query’s prefix for L1. When the query

finds that node, it advances to L1 and begins traversing the linked list associated with the

matching membership vector. It follows a similar process as it did in the base list, but

now the query is looking for a longer prefix to match. The query continues this process of

longer prefix matching as it advances up the skip graph levels. The query stops when one

of three conditions is met.

The first conditions arises when the query’s prefix fully matches the prefix of a

membership vector at some particular level. This indicates that every node within that

23

linked list should be notified of the query. The query progresses in both directions until

reaching both ends of the list. For example, Figure 13 illustrates the execution of a range

query “0010X”. (This query notation will be used throughout this document. “0010” is

the query prefix, and the “X” indicates any value can be inserted.) Essentially, this is a

query for all nodes within the bottom-right quadrant of the bottom-left quadrant of the

main grid found in Figure 11. The query is initiated at node 12, and progresses in both

directions in the base list L0. The query that progresses to the left is transferred to node

10, where it is determined that the L1 membership vector prefix (00) of node 10 matches

that of the query (0010X) at that level. At this point, the query remains within node 10,

but advances to L1. The query transfers to node 4, where it is determined that the L2

membership vector prefix (0010) of node 4 matches that of the query (0010X) at that

level. The query remains at node 4, and advances to L2. The query can now traverse the

entire list in which node 4 resides, because the query prefix of “0010” exactly matches it.

The second condition that stops a query occurs when the query advances to the

highest level of the skip graph. At this point, the query prefix is being compared with the

longest possible membership vector prefix. The query must traverse the entire list at the

top-most level, and at each node compare the entire query prefix with the appropriate

prefix length of the membership vector. Unless every node in this list should be included

in the query results, this condition can have a significantly negative impact on query

response time because it must be sent to every node in the list.

The third condition that stops a query occurs when the query traverses an entire

list without finding any Li+1 membership vector prefixes that match the query prefix for

24

that level. Continuing our example with Figure 13, if the query was “0011X,” upon

reaching L1 the query would traverse through the entire list of node 10, node 4, and node

2, and not find any L2 membership vector prefixes of “0011”. Therefore, the query

determines that no nodes exist with a membership vector prefix of “0011,” which is in

fact the case.

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

010101 000001 110011

2 3 4 7 17

3

10 12

7 17

3 7

20
001000 010101 001000 101001 111110

2 4 10 12 20

17
2 10 20 4

12

3 7 17
2 10 20 4

12

2 2 2 2 2 2 2 2

001000 2

001000 2

001000 2

010101 2

010101 2

010101 2

001000 2

001000 2

001000 2

010101 2

010101 2

010101 2

000001 2

000001 2

000001 2

110011 2

110011 2

110011 2

101001 2

101001 2

101001 2

111110 2

111110 2

111110 2

Figure 13. Range Query “0010X” In A Multi-Dimensional Skip Graph

This querying process is analogous to the hierarchical and self-similar properties

of the z-order curve discussed in Section 2.3.1 and illustrated by Figure 7 and Figure 9.

The base list L0 is analogous to a maximally zoomed-out z-curve. A query locating a

node with a matching L1 membership vector prefix is analogous to locating a node that is

in the quadrant that needs to be zeroed in. The process is repeated within only that

quadrant (i.e., the L1 list that had the matching membership vector prefix).

25

2.4 Mobility

If nodes in skip graph are able to move, their geographical locations changes over

time. This impacts both types of skip graphs. First and foremost, node mobility causes

link failures between nodes that were previously in communication, but because of

increased distance, are not able to communicate anymore. These link failures invalidate

node references throughout the skip graph. [AsS03] discusses how nodes maintain a valid

skip graph structure. Figure 14 shows a node moving from (0102, 0012) to (1012, 0112).

 000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

Figure 14. Node Mobility
For a standard skip graph, this corresponds to a key change from 0010012 to

1001112. The random membership vector may remain the same, but the position in each

linked list at each level changes due to the new key. The opposite happens in a multi-

dimensional skip graph. The random node keys remain the same, but the membership

vector changes based on the new z-ordering of the new coordinates. This essentially

moves the node into a new linked list at each level (except L0).

26

Update messages are sent as nodes enter and leave geographic areas that the skip

graph encompasses. Some nodes may not even realize the reference to an adjacent node

is not valid until executing its part of a query. The number of update messages sent is

dependent on the number of levels the skip graph must maintain. A skip graph with more

levels must iterate a node through each level to determine which linked list the node

belongs to at each level. In addition, a node’s key in a standard skip graph changes upon

a geographic move; the key is created based on the z-order construction of the node’s

geographic coordinates. This implies a search query (using its own key as the search

parameter) is executed to determine where in the base list in L0 the node is to be inserted.

Likewise, in the proposed multi-dimensional skip graph, the node’s random key remains

the same, and so the node preserves its position in the base list in L0. The node simply

iterates through every level higher than L0. The absence of executing search queries has a

noted impact on message counts incurred due to mobility.

2.5 Related Work

Skip graphs are relatively recent compared to the other distributed data indexing

techniques. William Pugh developed the skip list in 1990 [Pug90], which led to a more

recent extension of skip graphs in 2003 [AsS03]. Other work has either extended skip

lists or skip graphs, or used them for a particular application.

2.5.1 Quadtrees

Quadrees, developed in 1980 [EGS04], are regions defined by hierarchical

divisions of a plane, such that any data points within the plane are within one of these

divisions. Typically, regions are divided into four equal-sized squares, giving the

27

quadtree its name. Each division of the plane is further divided into four regions of equal

size, and so on. This hierarchical division process continues until all data points within

the plan are within a single division.

The precision of queries discussed in this research pertain directly to the notion of

the quadtree. The number of levels of a query is a function to how many hierarchical

divisions the geographical area of interest is divided into.

2.5.2 Skip Quadtree

Skip quadtrees [EGS04] combine skip lists and quad trees and results in a

dynamic data structure for multi-dimensional data. Skip quadtrees can be applied to range

searching algorithms, the basis of this research. This research, however, uses quadtrees

with skip graphs, not skip lists. Essentially, that is what standard and multi-dimensional

skip graphs in this research are based on: determining node keys or membership vectors

within a skip graph based on a location in the hierarchy of the quadtree.

2.6 Summary

This chapter reviews fundamental concepts of retrieving query information from a

skip graph. It presents the structures of skip lists and skip graphs and how multi-

dimensional data such as geographic positions can be linearized into a single dimension

using techniques such as z-ordering. Issues with node mobility are introduced and their

impacts on skip graph functionality are discussed. Finally, other work related to skip

graphs is presented.

28

III. Methodology

This chapter presents the methodology used to investigate the impact a multi-

dimensional skip graph has on range queries and mobility performance in a distributed

sensor network. Section 3.1 defines the problem statement, including the goals of the

research and the approach used to achieve those goals. Section 3.2 discusses the scope of

the problem. Section 3.3 introduces the three parts of the system model from a software

engineering perspective: the model, view, and controller. Section 3.4 discusses metrics

used to evaluate query and mobility performance. Sections 3.5 and 3.6 describe the

parameters of the model, and which of those parameters are used as experimental factors.

Section 3.7 addresses the evaluation techniques used, and section 3.8 discusses the design

of the simulation.

3.1 Problem Statement

3.1.1 Goals and Hypothesis

The primary goal of this research is to determine the performance of range query

execution after modifying the standard skip graph [AsS03]. The type of range query

includes returning a set of nodes geographically bound by a certain area. A secondary

goal of this research is to determine how node mobility affects the dynamics of both the

standard and multi-dimensional skip graphs by examining the cost of sending the

necessary update messages to neighboring nodes to sustain skip graph invariants

[AsS03].

The number of levels, node count, geographical position precision, and

geographical query size determines the performance of query execution. In an ideal skip

29

graph, a node is added to an existing skip graph distributed data structure by determining

its membership vector and subsequent membership vector prefixes for each level, and

being added to the appropriate list accordingly [AsS03]. It continues this process level by

level until the node becomes a singleton. That is, there are no nodes that match its

membership vector at a particular level. A node within a DSN may not have adequate

resources for a skip graph. Memory and processing resources on portable sensor nodes

may limit the number of levels that a skip graph can have. An increase in the number of

levels in a skip graph implies an increase in neighbor node references that need to be

maintained. An increase in the number of levels also allows more precise geographical

queries to be executed efficiently. Precise geographical queries may still be executed with

a limited number of levels, but as the node count increases, the possibility of wasted node

communications becomes more probable.

The number of levels and node count determines mobility performance. When

node changes geographical position, it affects the two skip graph types in different ways.

In a standard skip graph, the key values are associated with the node’s geographical

position. If a node’s position changes, then so does the node’s key. This means re-

ordering the node in each linked list the node is a member of, including the base list at L0.

Chapter 4 discusses the impacts of that key change. The node’s membership vector

remains the same. In a multi-dimensional skip graph, it is the node’s membership vector

that is modified when a node’s geographical position changes. The node’s key remains

the same, but the node now moves to possibly different linked lists at each level, save L0.

30

Since nodes don’t need to re-order in L0 in a multi-dimensional skip, this has positive

impacts on node mobility. This is also discussed in Chapter 4.

3.1.2 Approach

Computer simulations are used to determine the performance of query execution

and mobility scenarios. Modifications of skip graph levels, node counts, range query size

(selecting all nodes within differing bounded geographical areas), and node geographical

coordinates are incorporated for both standard and multi-dimensional skip graph

simulations. A professional simulation product such as OPNET Modeler [Opn07] is not

integrated into the simulations, and so model validation tests are required. Simulation

measurements are analyzed to compare message counts and approximate hop counts

between the different configurations.

3.2 System Scope

A DSN is a system of independently operating sensor nodes that communicate

with one another using a routing protocol. Each node is a participant in a distributed data

structure, a skip graph. Several assumptions have been made to scope the problem to a

manageable size.

The primary focus of this research is executing geographical queries within a

DSN. Therefore, each node has some form of on-board geographical positioning

hardware such as Global Positioning System (GPS), or has the ability to determine its

geographical position from neighboring nodes. This information is considered inherent to

every node.

31

A real-world distributed network must compensate for message failures. Failed

nodes, noisy transmission environments, and packet collisions are just a few of the

problems in a wireless network. The simulations assume every skip graph message sent is

received by the intended destination.

The constraints, or invariants, in an ideal skip graph include the following

[AsS03]. Let x be any node in the skip graph, xRi be the node reference to the Right of

node x at level i, xLi be the node reference to the Left of node x at level i, and m(x)i be the

prefix of the membership vector of node x at level i.

1. If xRi≠⊥ , xRi.key > x.key | If node x has a reference to a node to its

right, then the node to the right’s key value is greater than the key

value at node x.

2. If xLi≠⊥ , xLi.key < x.key | If node x has a reference to a node to its left,

then the node to the left’s key value is les than the key value at node x.

3. If xRi≠⊥ , xRiLi = x | If node x has a node reference to its right, then the

node to its right has a reference to node x on its left.

4. If xLi≠⊥ , xLiRi = x | If node x has a node reference to its left, then the

node to its left has a reference to node x on its right.

Essentially, the simulations execute as if the skip graph remains in a stable state

where these invariants always hold. Invariants will not hold as the mobility simulations

are performed, until the necessary update messages are sent to stabilize the skip graph.

The simulations use a local data structure; therefore when a node moves, the references in

32

memory are updated accordingly, and the number of messages needed to stabilize the

skip graph are recorded.

3.3 System Model

To perform query and mobility simulations on the standard and multi-dimensional

skip graphs, the skip graphs are modeled in software. The Java Programming Language

[Jav07] is used to implement both skip graph types and the simulations. Eclipse 3.1.2

[Ecl07] provides the Integrated Development Environment (IDE). The Java/Eclipse

combo was chosen because of its widespread popularity and the author’s familiarity.

Representations of the system model use the Unified Modeling Language (UML)

[UML05]. UML is an industry standard language to model and specify interaction

between components of a software system. In each UML diagram, superfluous details are

omitted to maximize clarity. The software design follows the standard Model-View-

Controller (MVC) architecture. The following sections describe each part of the MVC

architecture.

3.3.1 Model

Figure 15 is a high level Class Diagram for both the standard and multi-

dimensional skip graph. Java is an object-oriented language well-suited for model

abstraction and both versions of skip graphs are implemented as local data structures in

Java for several reasons. The focal points of this research are query execution and

mobility performance. The query simulations execute in a “well-behaved” skip graph.

That is, nodes do not fail, and links between nodes are healthy. Skip graphs are inherently

33

a distributed data structure, but to help scope the problem to focus on query performance,

certain issues arising from this distribution have been ignored.

As Figure 15 illustrates, an abstract SkipGraph class is sub-classed into the two

different versions of skip graphs: the standard skip graph (StdSkipGraph) and the multi-

dimensional skip graph (MultiSkipGraph). Note that the rangeQuery(Node, int, int) and

updateNode(Node) methods are overridden in each subclass; each skip graph type

implements its own version of querying and node update (for mobility) algorithms.

<< abstract>>
SkipGraph

numLevels : int
mx : HashMap<Node, Integer> // Membership Vectors
skipGraph : LDG[] // Display View data structure
skipGraphKeys : List<Node>[][] // Actual Skip Graph
numMsgsForLastAdd : int // for insert

+rangeQuery(Node,int, int) : List<Node> // geo query
+search(Node, Integer) : List<Node> // single node query
+findBuddies(Node, int) : int // # msgs to determine m(x)
+updateNode(Node) : int // # msgs for mobility
+getDirectedGraph() : LDG[] // to display Skip Graph

StdSkipGraph MultiSkipGraph

Collection

rangeQuery(Node, int, int) : List<Node>
updateNode(Node) : int

rangeQuery(Node, int, int) : List<Node>
updateNode(Node) : int

Figure 15. SkipGraph Class

34

Skip graphs incorporate methods associated with collections such as add() and

delete(), and also exhibit properties of order. Therefore, skip graphs implement a

collection interface.

Figure 16 shows the composition of many nodes in a skip graph. Each node has

several attributes, including geographical position (x,y,z coordinates), node id, and

membership vector. Nodes are aware of what type of skip graph they belong using the

Strategy design pattern [Fre04]. A node is constructed with one of two strategy classes:

RandomMX or RandomKey. The RandomMX class creates a node using a standard skip

graph, whereas RandomKey is used to create a node using a multi-dimensional skip

graph.

<< abstract>>
SkipGraph

numLevel : int
mx : HashMap<Node, Integer> // Membership Vectors
skipGraph : LDG[] // Display View data structure
skipGraphKeys : List<Node>[][] // Actual Skip Graph
numMsgsForLastAdd : int // for insert

+rangeQuery(Node,int, int) : List<Node> // geo query
+search(Node, Integer) : List<Node> // single node query
+findBuddies(Node, int) : int // # msgs to determine m(x)
+updateNode(Node) : int // # msgs for mobility
+getDirectedGraph() : LDG[] // to display Skip Graph

Collection Node

x, y, z : int
id : int
mx: int

public static int zOrder(int x, int y)

RandomKey
setMX(int mx)
setKey(int key)

RandomMX
setMX(int mx)
setKey(int key)

<< abstract >>
AbstractCreate

abstract setMX(int mx)
abstract setKey(int key)

Figure 16. Node Class

35

As Figure 16 illustrates, a node references an abstract creation object, which is

sub-classed into either RandomKey or RandomMX object. Each of the objects builds the

node’s key and membership vector differently, and using the strategy design pattern is an

efficient way to accomplish this.

3.3.2 View

Figure 17 shows a snapshot of the simulation interface. The views were designed

to serve two general purposes. First, the main window frame functions as a launch pad

for different simulations that can be run which are selected via menu options. Second, the

main window serves as a parent window for the internal frames generated to view the

properties of a skip graph. Two views can be generated: the skip graph view and/or a

geographical layout view. Each of these views is selected via menu options. Figure 17

shows the main simulation window with these two internal frames.

The top-right internal frame shows a graphical representation of the skip graph

currently being modeled. Note the horizontal line separation indicating level changes.

The arrowed line segments connect various nodes within the graph. These are analogous

the horizontal link references between nodes as seen in earlier figures of skip lists and

skip graphs.

The bottom-left internal frame shows the geographical layout of all the nodes in

the skip graph. It serves as a visual check indicating the correct nodes were selected for a

given multi-dimensional range query. The nodes are positioned within the internal frame

based on their geographical coordinates relative to the size of the frame.

36

Figure 17. View Snapshot

3.3.3 Controller

The controller class brings the model and view classes together so simulations can

be run and data gathered. Figure 18 shows the overall MVC architecture for the design

implementation. When the user selects a menu option, the controller class creates all of

the necessary objects to perform the requested operation.

37

SkipGraphController

Node SkipGraph

FrameMain

IFrameSkipGraph IFrameGeoLayout

JFrame

JInternalFrame

Model
gjb.thesis.model

Controller
gjb.thesis.controller

View
gjb.thesis.view

Figure 18. Summary of M-V-C UML

3.4 Performance Metrics

Two aspects of skip graphs were examined in this research: geographical

querying performance and node mobility performance.

Query performance is compared in several ways. DSNs are typically concerned

with power management performance, and so the less radio energy expended, the better.

It may be more energy efficient to propagate the query through a series of three nodes

instead of directly transmitting from the first node to the third. At the same time,

however, it is also desirable to minimize query response time, so tradeoffs must be made.

38

In general, the fewer the nodes contacted in a particular query, the lower the response

time will be.

The following metrics measure geographical query performance:

• Nodes contacted with skip graph messages: Measures the number of nodes that

either sent a message to another node, or had a message sent to it.

• Number of routing layer messages: The number of underlying routing layer

packets sent to complete the query. Skip graphs are an application layer-based

routing system and so the underlying network routing protocol (e.g., AODV) is

abstracted away.

Node mobility performance is primarily based on how many skip graph messages

it takes to return the skip graph to a working state after nodes have been moved. As

discussed in Chapter 2, if a node changes location, queries may need to be performed (if

the node must reorder itself within the base list L0 as in a standard skip graph) and update

messages need to be sent to re-associate the node to possibly new linked lists based on

the node’s new membership vector. The following metrics measure node mobility

performance:

• Messages Sent: When a node moves to a new geographical location as described

above, it needs to be reinserted in the correct position in the correct membership

vectors at all levels. This metric counts how many messages were sent to

accomplish this task.

39

3.5 Parameters

The parameters of a skip graph and associated querying mechanisms are

properties that, if changed, are likely to affect the performance of the query or the ability

to maintain a skip graph if nodes are mobile. Each of the parameters listed below apply to

both standard skip graphs and multi-dimensional skip graphs.

3.5.1 Skip Graph Parameters

• Levels: A node is added to a skip graph level by level, the number of levels

should be increased until that particular node is a singleton [AsS03]. That is, until

the node exists by itself in its own linked list at the top level. Ideally, this should

be the case. However, in reality, sensor nodes have limited memory and

processing power. Therefore, it’s prudent to examine how the modification of the

number of levels in the skip graph affects query performance.

• Node Count: Node count reflects the total node population in a given sensor

network. Node count impacts query response time because as the population

changes, on average fewer or more nodes will need to be notified about the query.

• Query size: This research notifies all nodes within a certain geographical range

that they must report some arbitrary sensor value. Figure 19 shows the familiar

geographical grid highlighting two different queries. A smaller query size implies

a higher query precision.

40

 000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

Figure 19. Two Range Queries

• Routing Protocol: The routing protocol has an impact on query and mobility

performance.

3.5.2 Mobility Parameters

• Levels: It is prudent to examine how a differing number of skip graph levels

affects mobility performance. As more levels are added, the number of update

messages that need to be sent to maintain the skip graph invariants increases.

• Node count: Node count affects mobility performance because as the network size

increases, so do the number of messages to send to maintain the skip graph

invariants.

• Node speed: The speed nodes are moving impacts the ability of the skip graph to

incorporate the changes. If a node moves so fast that it changes geographical

bounds before the skip graph has the opportunity to update itself, this will

significantly affect query performance.

41

• Number of moving nodes: The more variation in node positioning, the harder it is

for a skip graph to fix itself quickly. The more moving nodes there are, the longer

it will take for a skip graph to become stable.

3.6 Factors

Factors are a subset of the skip graph and mobility parameters. These parameters

are chosen to limit the scope of analysis so it can be determined how they affect the

performance of queries.

Any parameter that is not chosen as a factor is explained. Since skip graphs are

application layer-based distributed data structures, the routing protocol is abstracted

away. It is assumed that the routing protocol suites the needs of the sensor network

application. The remaining parameters are chosen as factors and are listed below.

• Number of Levels: Based on preliminary simulations, level values of 4, 5, 6, 8,

and 10 are chosen.

• Number of Nodes: Node counts of 100, 500, 1000, 2000, 5000, and 10000 are

chosen.

• Query size: The geographical range query contacts all nodes within a specified

coordinate range. Figure 20 shows two examples of range queries. The selected

queries for this research are 10XXXXXXXXXX, 1001XXXXXXXX,

100110XXXXXX, 10011000XXXX, 1001100011XX, and 100110001101. The

prefixes (e.g., 1001 in the second query) were selected arbitrarily. As Section 3.7

will discuss, each query is submitted 100 times. A query of 1001XXXXXXXX

will, on average, return the same number of nodes as a query of

42

1011XXXXXXXX. The simulations are more concerned with how many extra

nodes are contacted to contact all of the required nodes, and modifying the prefix

length of the query is a factor.

 000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

Figure 20. Good Query (Right) Versus Bad Query (Left)

In Figure 20, the z-curve slices in and out of the bounded query on the left,

whereas the bounded query on the right contains a complete sub-section of the curve. The

nature of z-ordering makes it difficult to execute range queries like the one on the left.

There are two immediate ways to alleviate this problem. The first way, and the more

complicated of the two, is to break up a given query into smaller sub-queries. To execute

the query on the left, smaller queries are derived by slicing up the query into sixteen

parts. The second method, the one this research chose to use, is to formulate queries that

encompass entire sub-sections of the z-curve, as in the query on the right. Table 1 shows

a summary of the factors.

43

Table 1. Summary of Query Factors

Factor Values
Levels 4 5 6
Nodes 100 500 1000
Query Size 10XXXXXXXXXX 1001XXXXXXXX 100110XXXXXX
Levels 8 10
Nodes 2000 5000 10000
Query Size 10011000XXXX 1001100011XX 100110001101

Similar to query performance parameters, any mobility parameters that are not

chosen as factors are explained. The mobility simulation considers a single node as it

instantaneously transfers from one position to another. The simulation then determines

how many messages are needed to fix each type of skip graph. The remaining node

mobility parameters are factors and are listed below. Table 2 gives a summary of the

node mobility factors

• Levels: Based on preliminary simulations, levels of 4, 6, 8, and 10 are chosen.

• Node count: Node counts of 100, 500, 1000, 2000, 5000, and 10000 are chosen.

Table 2. Summary of Node Mobility Factors

Factor Values
Levels 4 6 8
Nodes 100 500 1000
Levels 10
Nodes 2000 5000 10000

44

3.7 Experimental Design

Each combination of the factors of Table 1 and Table 2 constitute parameters to

the simulation to determine the performance of geographical range queries and node

mobility, respectively.

As Table 1 shows, 5 levels * 6 node counts * 6 query sizes total 180 separate

simulation runs. Each of those simulation runs is replicated 100 times to capture random

fluctuations due to different node distributions. Each of the replications creates a standard

and multi-dimensional skip graph with the same (random) geographical distribution of

nodes. Java’s Random class provides the random distributions; therefore different seed

values are used for each of the iterations.

For instance, one of the 180 simulations calls for a skip graph with 4 levels, 500

nodes, to execute a 10XXXXXXXXXX query. That particular simulation iterates 100

times, creates the two different 4 level skip graphs, and populates each with 500 nodes of

the same (random) geographical distribution. The query is then submitted to both skip

graphs, and how many nodes are involved in the query execution is recorded.

As Table 2 shows, 4 levels * 6 node counts total 24 separate simulation runs.

Each of those simulation runs are replicated 100 times to capture random fluctuations due

to different node distributions and differing node selections. Similar to the query

simulation, each of the iterations create a standard and multi-dimensional skip graph with

the same (random) geographical distribution of nodes. Again, Java’s Random class

provides the random distributions; therefore different seed values are used for each of the

iterations.

45

3.8 Evaluation Technique

The skip graph models are implemented in the Java programming language, and

so a controller class is created to facilitate the simulations. All of the factors found in

Table 1 and Table 2 are configurable in the software. Simulation was chosen as the

evaluation technique for several reasons. Time and cost constraints do not make it

feasible to set up a real-world sensor network consisting of thousands of nodes running

skip graphs. That eliminates the option for obtaining empirical results. While there are

analytic models for basic skip graph operations like searching for a single node,

executing a geographical range query is beyond the scope of this research.

Since a professional-grade modeling tool is not used to run the simulations, it

must be shown that the Java model is correct. This is done by executing geographically

bounded queries on many random skip graph networks and comparing those results with

an expected value. This model validation is analyzed in Chapter 4.

Query performance for each skip graph type is compared to each other by

graphing average message count as total node counts increases. Recall that each query

simulation is repeated 100 times, and so each message count data point represents an

average of 100 trials. Many conclusions can be drawn from an analysis of the graphs

alone. However, to state that one skip graph performs a query better than another, a more

rigorous analysis is beneficial.

Confidence Intervals (C.I.s) provide insight to an expected mean value from

sample data. The C.I.s presented in this research use the t-distribution because the actual

46

variance of the population is not known. The variance, or standard error, is estimated

from the sample data using

N
ssm (2)

where sm is standard error, s is sample standard deviation, and N is the number of

samples. The upper and lower limits of the mean can then be computed using the t-

distribution formula or

Upper/Lower Limits = Sample Mean± tC.L. * sm (3)

where tC.L. is the Confidence Level (1.98 for 95% confidence).

In summary, the upper and lower limits computed from (3) are used to determine

with 95% confidence that the actual mean falls within those bounds, thus providing a

basis for comparison in Chapter 4.

3.9 Summary

This chapter presents the methodology used in conducting this research. It

describes in detail the Java implementation of the skip graph models, including the usage

of the Model-View-Controller design pattern. This chapter also discusses the various

parameters that affect query performance in a skip graph, as well as determining which of

those parameters are evaluated in the simulations. Finally, the experimental design is

described and how the simulation results are evaluated is presented.

47

IV. Analysis and Results

This chapter presents the results of the simulations and analyzes those results.

Model validation results are presented in Section 4.1. Section 4.2 presents query

performance results, and Section 4.3 presents node mobility results.

4.1 Model Validation

Part of this research includes implementing skip graphs in software using the Java

programming language. Full program code and comments can be found in Appendix A.

Models created in software must be validated to be confident of the correctness of

simulation results. This section provides that validation.

Chapter 3 describes the implementation chosen for the skip graphs. This research

examines query and node mobility performance, disregarding node and link failures. A

suitable model validation technique involves executing a bounded range query in a skip

graph populated with nodes uniformly distributed. The node count returned in the query

is compared with the expected value of the node count based on query area and average

node density.

Figure 21 shows 12 nodes distributed uniformly across the grid. If the highlighted

query is executed, the resultant node count will be 3. The expected value of the number

of returned nodes depends on node density and query range or

[]
TotalArea
QueryAreaountTotalNodeCNodeCountE ×= . (4)

In this case, 12 nodes occupy the unit area. Querying the top-left quadrant yields a

Query Area/Total Area ratio of 0.25. Therefore, the expected node count returned in the

48

query is 12*0.25 = 3 nodes. The actual node counts returned may not always be the same

as the expected value of the node counts due to the random nature of the node

distribution. Each of the 180 query simulations mentioned in Chapter 3 tracks how many

nodes are returned in the query, as well as how many total nodes participated in the

query. These node counts combined with the query size information, is enough to

compute the model validation graphs as described.

Figure 21. Top-Left Quadrant Query

Figure 22a - Figure 22e shows validation results from 5 different skip graphs,

each with a different number of levels, and each executing a query of

“1001XXXXXXXX”.

49

Query Node Counts (4 Level Skipgraph)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 2000 4000 6000 8000 10000 12000

Total Nodes

N
od

es
 R

et
ur

ne
d

E[node count]
Actual

a) 4 Level Skip Graph

Query Node Counts (5 Level Skip Graph)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 2000 4000 6000 8000 10000 12000

Total Nodes

N
od

es
 R

et
ur

ne
d

E[Node Count]
Actual

b) 5 Level Skip Graph

50

Query Node Counts (6 Level Skip Graph)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 2000 4000 6000 8000 10000 12000

Total Nodes

N
od

es
 R

et
ur

ne
d

E[Node Count]
Actual

c) 6 Level Skip Graph

Query Node Counts (8 Level Skip Graph)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 2000 4000 6000 8000 10000 12000

Total Nodes

N
od

es
 R

et
ur

ne
d

E[Node Count]
Actual

d) 8 Level Skip Graph

51

Query Node Counts (10 Level Skip Graph)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 2000 4000 6000 8000 10000 12000

Total Nodes

N
od

es
 R

et
ur

ne
d

E[Node Count]
Actual

e) 10 Level Skip Graph

Figure 22. Query Node Count, Actual Versus Expected. Circular Points Represent
Expected Node Counts. Square Points Represent Measured Node Counts

Each sub-figure from Figure 22 contains two graphs, one with circular data points

(expected node counts), and one with square data points (measured node counts). Each

sub-figure shows the number of returned nodes from the execution of the query

1001XXXXXXXX, both actual and expected, at different level settings of the skip graph.

Recall that each of the query simulations iterates 100 times, and each of the iterations

executes the same query on a different skip graph with random node distributions.

In each of the sub-figures, the actual results shadow the expected values almost

exactly. Thus the query is executing properly, recording each node that should be

52

responding to the query. Table 3 shows a summary of Figure 22a, the results from a skip

graph with 4 levels. The table compares the actual node counts returned with the

expected value of the node count. In each of the simulations varying total node counts in

the network, the actual returned node count from the query falls within the 95%

confidence interval. The confidence intervals were computed using (3).

Table 3. Model Validation Results, 4 Level Skip Graph

Nodes E[Node Count] Actual Node Count Confidence Interval
100 6.25 6.94 (6.40, 7.48)
500 31.25 31.34 (30.23, 32.45)

1000 62.50 64.48 (62.93, 66.03)
2000 125.00 125.38 (123.19, 127.57)
5000 312.50 315.35 (311.41, 319.29)

10000 625.00 624.15 (619.32, 628.98)

Similar results are obtained when evaluating the other skip graph levels in Figure

22. That data is omitted here because they all point to the same conclusion: the skip graph

implementation is correct.

4.2 Analysis of Query Execution

Six query executions, each with varying geographical ranges, are simulated. The

largest, 10XXXXXXXXXX, returns all nodes within the lower-right quadrant of the

entire unit area. The remaining queries simulations are 1001XXXXXXXX,

100110XXXXXX, 10011000XXXX, 1001100011XX, and 100110001101, each query

being more precise than the previous and thus, on average, return fewer nodes. Each

simulation records how many nodes were involved in propagating the query to the nodes

that need to be notified of the query. In an ideal query execution, only the nodes that fall

53

within the query bounds propagate the query. However, this is rarely the case, since the

query may be injected anywhere in the network and must traverse the network towards

the desired area of interest. It is desirable to minimize that extraneous communication.

The fewer the nodes involved in query execution implies better query performance.

The following figures show the results of executing the six queries mentioned

above. In each figure, ten sets of data are graphed. Five of the sets show the results of

executing the query on the standard skip graph (Std) with levels of 4, 5, 6, 8, and 10. The

other five sets show the results of executing the query on a multi-dimensional skip graph

(Multi) with levels of 4, 5, 6, 8, and 10. The x-axis is the total number of nodes in the

skip graphs, and the y-axis is how many nodes were involved in executing the query.

Keep in mind that the main metric that to minimize are nodes contacted. Following each

of the figures is a table with the 95% confidence interval for each of the data points in the

figure that precedes it. The tables list all combinations of node count and skip graph

levels, and for each combination have the mean and confidence interval ranges for the

standard skip graph and multi-dimensional skip graph.

The last column in each of these tables is the difference in the lower bound of the

95% C.I. of the mean of the standard skip graph node counts and the upper bound of the

95% C.I. of the mean of the multi-dimensional skip graph node counts. A positive value

indicates that there is no overlap in the C.I. ranges of the standard and multi-dimensional

skip graph which means the mean node count of the multi-dimensional skip graph is

lower than that of the standard skip graph for that particular query execution with 95%

confidence. These “Difference” values are highlighted in gray. Negative values in the last

54

column of the tables indicates one of two things: there is an overlap in the C.I. range of

the two skip graph types, or, the lower bound of the 95% C.I. of the multi-dimensional

skip graph is higher than the upper bound of the 95% C.I. of the standard skip graph. The

latter indicates the opposite of the values marked in gray. That is, it indicates that the

mean node count of the multi-Dimensional skip graph is higher than that of the standard

skip graph with 95% confidence. These are marked in bold. Figure 23 and Table 4 shows

the results of a 10XXXXXXXXXX query.

10XXXXXXXXXX

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 Levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 Levels (Multi) 5 Levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levles (Multi)

Figure 23. 10XXXXXXXXXX Query Results

55

Table 4. 10XXXXXXXXXX Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 28.14 29.04 29.94 27.96 28.97 29.98 -1.84
4 500 126.94 128.75 130.56 125.72 127.48 129.24 -2.30
4 1000 250.85 253.81 256.77 247.20 250.08 252.96 -2.11
4 2000 507.55 511.43 515.31 500.01 503.68 507.35 0.20
4 5000 1262.61 1269.46 1276.31 1245.29 1250.79 1256.29 6.32
4 10000 2531.33 2543.63 2555.93 2492.67 2501.24 2509.81 21.52
5 100 26.72 27.53 28.34 27.27 28.30 29.33 -2.61
5 500 125.52 127.41 129.30 125.30 127.30 129.30 -3.78
5 1000 251.60 254.20 256.80 251.22 253.87 256.52 -4.92
5 2000 501.47 505.32 509.17 500.29 504.07 507.85 -6.38
5 5000 1257.51 1264.00 1270.49 1253.57 1260.02 1266.47 -8.96
5 10000 2499.70 2509.53 2519.36 2490.30 2499.87 2509.44 -9.74
6 100 27.47 28.39 29.31 27.62 28.60 29.58 -2.11
6 500 125.40 127.25 129.10 125.42 127.39 129.36 -3.96
6 1000 251.53 254.33 257.13 251.19 254.09 256.99 -5.46
6 2000 505.31 508.97 512.63 504.62 508.31 512.00 -6.69
6 5000 1248.33 1254.31 1260.29 1248.06 1254.01 1259.96 -11.64
6 10000 2487.85 2495.68 2503.51 2486.25 2494.06 2501.87 -14.01
8 100 27.15 28.13 29.11 27.26 28.19 29.12 -1.96
8 500 126.84 128.53 130.22 126.64 128.39 130.14 -3.30
8 1000 250.45 253.36 256.27 250.84 253.83 256.82 -6.37
8 2000 498.88 502.99 507.10 498.69 502.79 506.89 -8.01
8 5000 1246.79 1252.95 1259.11 1247.25 1253.29 1259.33 -12.54
8 10000 2489.10 2497.62 2506.14 2489.23 2497.78 2506.33 -17.23

10 100 27.40 28.35 29.30 26.74 27.76 28.78 -1.37
10 500 125.39 127.23 129.07 125.53 127.33 129.13 -3.75
10 1000 252.55 255.11 257.67 252.40 255.10 257.80 -5.25
10 2000 498.16 502.09 506.02 497.66 501.61 505.56 -7.40
10 5000 1252.88 1258.95 1265.02 1252.93 1259.03 1265.13 -12.25
10 10000 2498.40 2507.11 2515.82 2498.40 2507.12 2515.84 -17.44

MultiStd

There is little differentiation between the ten data sets. The query is so large (25%

of the total unit area) that the number of nodes involved in the query is almost equal to

the number of nodes returned in the query for both skip graph types. This is logical,

because the query quickly propagates to whichever quadrant is being queried, and then

notifies all of the nodes within that quadrant. There are only three scenarios in which the

multi-dimensional skip graph performs better than the standard skip graph – in large node

56

count networks with skip graphs with 4 levels. Figure 24 shows the results of a

1001XXXXXXXX query.

1001XXXXXXXX

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 levels (Multi) 5 levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levels (Multi)

Figure 24. 1001XXXXXXXX Query Results

Figure 24 and Table 5 indicate some differences between the two skip graph

types. Similar to the 10XXXXXXXXXX query, the multi-dimensional skip graph with 4

levels and node counts greater than 1000 outperform the standard skip graph. Multi-

dimensional skip graph query performance begins to outperform the standard skip graph

performance in 5 level skip graphs when node counts increase to 10000. There are no

situations where the standard skip graph outperforms multi-dimensional skip graphs.

57

Table 5. 1001XXXXXXXX Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 12.31 12.95 13.59 11.39 12.21 13.03 -0.72
4 500 37.39 38.72 40.05 36.97 38.40 39.83 -2.44
4 1000 72.72 74.59 76.46 68.76 70.58 72.40 0.32
4 2000 137.24 140.16 143.08 129.53 131.85 134.17 3.07
4 5000 338.55 343.86 349.17 318.07 322.06 326.05 12.50
4 10000 679.94 690.01 700.08 626.00 630.80 635.60 44.34
5 100 12.28 13.02 13.76 11.60 12.61 13.62 -1.34
5 500 37.15 38.42 39.69 35.95 37.22 38.49 -1.33
5 1000 67.84 69.38 70.92 67.02 68.79 70.56 -2.72
5 2000 132.62 134.93 137.24 130.46 132.67 134.88 -2.26
5 5000 317.51 320.74 323.97 313.41 316.34 319.27 -1.76
5 10000 637.78 642.98 648.18 625.99 630.94 635.89 1.88
6 100 12.56 13.44 14.32 11.45 12.30 13.15 -0.59
6 500 37.67 39.18 40.69 36.12 37.61 39.10 -1.43
6 1000 68.17 69.87 71.57 67.10 68.84 70.58 -2.41
6 2000 128.63 131.28 133.93 127.30 129.73 132.16 -3.54
6 5000 317.45 320.48 323.51 315.60 318.42 321.24 -3.79
6 10000 629.53 634.19 638.85 627.12 631.85 636.58 -7.04
8 100 12.27 13.01 13.75 11.35 12.24 13.13 -0.85
8 500 36.87 38.10 39.33 35.28 36.53 37.78 -0.91
8 1000 68.67 70.36 72.05 66.23 67.87 69.51 -0.84
8 2000 130.61 132.92 135.23 130.15 132.37 134.59 -3.98
8 5000 313.42 317.05 320.68 313.23 316.87 320.51 -7.09
8 10000 632.04 637.11 642.18 630.75 635.72 640.69 -8.65

10 100 12.26 13.07 13.88 11.41 12.36 13.31 -1.04
10 500 37.24 38.53 39.82 35.95 37.21 38.47 -1.23
10 1000 68.05 69.69 71.33 66.99 68.85 70.71 -2.67
10 2000 131.96 134.33 136.70 130.81 133.10 135.39 -3.43
10 5000 313.52 316.70 319.88 312.65 315.82 318.99 -5.48
10 10000 624.71 629.35 633.99 623.40 628.00 632.60 -7.89

Std Multi

Figure 25 shows the results of the 100110XXXXXX query execution simulation.

It is apparent from the figure that 4 level standard skip graphs perform this query poorly

compared to multi-dimensional skip graphs as node count increases. Table 6 confirms the

graphical analysis. In this query range, 4 level multi-dimensional skip graphs outperform

standard skip graphs in networks with node counts greater than 1000. The C.I. ranges of

58

the mean node counts for these scenarios do not overlap, indicating the difference is

statistically significant.

100110XXXXXX

0.00

50.00

100.00

150.00

200.00

250.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 Levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 levels (Multi) 5 Levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levels (Multi)

Figure 25. 100110XXXXXX Query Results

The main reason for the poor performance in the 4-level standard skip graph is as

the node count increases, so does the length of the linked-lists in each level of the skip

graph. The two different query methods for each type of skip graph impacts query

performance, especially as node counts increase. In a standard skip graph, which starts

the query at the topmost level, it is possible to traverse several nodes before dropping

down to a lower level. A list is traversed as long as the query is approaching the specified

key range and that the conditions for dropping down to a lower level have not been met

59

(Section 2.3). Until those conditions are met, the query is forced to continue to transfer to

adjacent nodes at higher levels.

Table 6. 100110XXXXXX Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 9.68 10.53 11.38 8.65 9.50 10.35 -0.68
4 500 17.52 18.73 19.94 15.98 17.23 18.48 -0.97
4 1000 27.81 29.31 30.81 24.43 25.60 26.77 1.04
4 2000 46.92 49.32 51.72 37.56 39.14 40.72 6.21
4 5000 108.46 113.06 117.66 84.50 86.57 88.64 19.82
4 10000 211.10 220.42 229.74 162.35 164.88 167.41 43.69
5 100 9.84 10.81 11.78 8.21 9.16 10.11 -0.27
5 500 17.04 18.12 19.20 16.37 17.60 18.83 -1.78
5 1000 25.23 26.54 27.85 23.56 24.74 25.92 -0.69
5 2000 39.41 40.79 42.17 37.38 38.93 40.48 -1.07
5 5000 91.91 94.22 96.53 87.28 89.20 91.12 0.79
5 10000 172.68 176.08 179.48 162.29 164.88 167.47 5.21
6 100 9.84 10.77 11.70 9.35 10.30 11.25 -1.40
6 500 17.02 18.40 19.78 14.78 15.79 16.80 0.22
6 1000 24.00 25.10 26.20 22.91 24.19 25.47 -1.48
6 2000 41.45 43.10 44.75 38.92 40.45 41.98 -0.53
6 5000 86.34 88.31 90.28 85.08 86.94 88.80 -2.47
6 10000 165.86 168.54 171.22 163.20 165.68 168.16 -2.30
8 100 9.24 10.00 10.76 8.50 9.37 10.24 -0.99
8 500 16.98 18.24 19.50 15.15 16.27 17.39 -0.42
8 1000 25.52 26.85 28.18 23.86 25.08 26.30 -0.78
8 2000 40.17 41.71 43.25 37.15 38.65 40.15 0.02
8 5000 85.62 87.66 89.70 85.41 87.46 89.51 -3.89
8 10000 163.96 166.87 169.78 162.10 165.03 167.96 -4.00

10 100 10.36 11.29 12.22 8.69 9.57 10.45 -0.10
10 500 16.71 17.81 18.91 15.19 16.28 17.37 -0.66
10 1000 25.72 27.10 28.48 24.27 25.63 26.99 -1.27
10 2000 40.33 41.81 43.29 39.01 40.26 41.51 -1.17
10 5000 86.92 88.83 90.74 86.56 88.68 90.80 -3.87
10 10000 163.90 166.53 169.16 162.60 165.27 167.94 -4.04

Std Multi

As the node count increases in a standard skip graph with a fixed number of

levels, the lists at the topmost level can become quite long, forcing the query to traverse

extraneous nodes before dropping down to a lower level. In a multi-dimensional skip

graph with a fixed number of levels, extraneous nodes are still contacted, but the process

60

is quite different. Recall that a multi-dimensional skip graph query begins at the base

level L0. The query traverses in both directions, looking for a matching prefix in the

membership vector of each node. The node keys are random, and so the probability a

matching prefix will be found is a random variable. As Figure 25 shows, multi-

dimensional skip graph querying outperforms the standard skip graph’s querying

mechanism for the scenarios specified in the previous paragraphs.

Figure 26 and Table 7 show the results from executing the query

10011000XXXX. These results differ from the previous figures, in that there are now

scenarios in which standard skip graphs outperform multi-dimensional skip graphs. The

reason for this is related to the precision of the query.

Each hierarchical sub-quadrant of the query is a level in the skip graph. Figure 11

and Figure 12 help to visualize this concept. A query of the entire unit area will return all

nodes, i.e. the base level of the skip graph. A query of 10XXXXXXXXXX returns the

proper sub-list in L1, that being the list containing node 17 as shown in Figure 12. This

corresponds to the geographical layout in Figure 11; node 17 is the only node in the

quadrant “10”. A query of 10011000XXXX is a perfectly legal query to execute,

however performance is hindered severely for multi-dimensional skip graphs of four

levels or less. The precision of the query is such that instead of returning an entire linked-

list in the skip graph, the query must traverse the entire list, returning only those nodes

whose membership vectors match the entire prefix of the query.

61

10011000XXXX

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 Levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 Levels (Multi) 5 Levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levels (Multi)

Figure 26. 10011000XXXX Query Results

The explanation above is further reinforced when the scenarios of skip graph

levels greater than 5 are examined. For these scenarios, the multi-dimensional skip graph

query performs comparably to the standard skip graph, as Table 7 indicates.

The effects suffered from extra query precision are not as prominent in the

standard skip graph query results, as Figure 26 illustrates. A standard skip graph query

drops down to the base level when it finds a node with a key value within range. Since

the nodes are sorted in the base list, the query traverses in both directions until finding

nodes with key values outside of the query range. The query does not waste time

traversing through nodes that are ultimately not included in the final query results.

62

Table 7. 10011000XXXX Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 9.18 10.02 10.86 7.65 8.41 9.17 0.01
4 500 15.05 16.28 17.51 15.62 16.90 18.18 -3.13
4 1000 19.93 21.52 23.11 23.60 24.78 25.96 -6.03
4 2000 28.99 31.08 33.17 38.59 40.03 41.47 -12.49
4 5000 53.03 57.45 61.87 84.72 86.67 88.62 -35.59
4 10000 92.77 101.85 110.93 160.55 163.20 165.85 -73.08
5 100 10.80 11.82 12.84 9.54 10.57 11.60 -0.80
5 500 14.06 15.27 16.48 11.99 13.14 14.29 -0.23
5 1000 16.38 17.59 18.80 15.14 16.54 17.94 -1.56
5 2000 20.78 22.13 23.48 18.30 19.66 21.02 -0.24
5 5000 35.68 37.78 39.88 30.01 31.40 32.79 2.89
5 10000 62.09 64.92 67.75 49.31 51.26 53.21 8.88
6 100 9.92 10.74 11.56 9.17 10.23 11.29 -1.37
6 500 14.60 15.79 16.98 12.42 13.64 14.86 -0.26
6 1000 16.61 17.92 19.23 14.44 15.82 17.20 -0.60
6 2000 20.96 22.07 23.18 18.71 20.18 21.65 -0.69
6 5000 32.87 34.40 35.93 29.49 31.10 32.71 0.16
6 10000 54.09 55.91 57.73 50.79 52.56 54.33 -0.24
8 100 9.64 10.46 11.28 8.61 9.36 10.11 -0.47
8 500 14.59 15.68 16.77 11.89 13.19 14.49 0.10
8 1000 16.51 17.89 19.27 14.82 16.16 17.50 -0.99
8 2000 20.64 22.00 23.36 18.12 19.50 20.88 -0.24
8 5000 33.71 35.23 36.75 30.87 32.50 34.13 -0.41
8 10000 51.89 53.47 55.05 49.38 51.22 53.06 -1.17

10 100 10.19 11.23 12.27 8.51 9.58 10.65 -0.46
10 500 14.09 15.09 16.09 12.14 13.43 14.72 -0.62
10 1000 15.99 16.98 17.97 13.73 14.79 15.85 0.14
10 2000 20.44 21.74 23.04 17.89 19.32 20.75 -0.30
10 5000 32.81 34.34 35.87 30.52 32.00 33.48 -0.67
10 10000 52.42 54.25 56.08 49.60 51.33 53.06 -0.63

Std Multi

Figure 27 and Table 8 illustrate the higher query precision issue further. As the

query becomes more precise (1001100011XX), the multi-dimensional skip graph shows

poorer performance at lower skip graph levels. This is the same problem as previously

stated, but in these figures it is more pronounced.

63

1001100011XX

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 Levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 Levels (Multi) 5 Levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levels (Multi)

Figure 27. 1001100011XX Query Results

Note the bold data in Table 8. The data indicates that standard skip graphs

outperform multi-dimensional skip graphs when executing a 1001100011XX with a 4

level skip graph and increasing node counts. Also, the 5 level skip graph simulations take

a higher total node count in the network to observe standard skip graphs outperform

multi-dimensional skip graphs for this query. As the skip graph level count increases to

more than 6, the query performances of standard skip graphs become comparable to those

of multi-dimensional skip graphs, and in some scenarios even outperformed by multi-

dimensional skip graphs.

64

Table 8. 1001100011XX Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 9.04 9.98 10.92 9.59 10.55 11.51 -2.47
4 500 13.90 15.14 16.38 15.10 16.19 17.28 -3.37
4 1000 18.58 20.37 22.16 23.16 24.36 25.56 -6.98
4 2000 24.34 26.34 28.34 38.41 39.97 41.53 -17.20
4 5000 41.66 46.23 50.80 84.64 86.53 88.42 -46.75
4 10000 72.15 81.20 90.25 161.93 164.48 167.03 -94.88
5 100 10.52 11.49 12.46 8.37 9.28 10.19 0.33
5 500 13.44 14.56 15.68 12.00 13.20 14.40 -0.96
5 1000 15.77 17.03 18.29 14.79 15.91 17.03 -1.27
5 2000 18.34 19.56 20.78 18.41 19.80 21.19 -2.85
5 5000 24.57 26.42 28.27 28.77 30.19 31.61 -7.04
5 10000 34.79 37.15 39.51 50.20 51.86 53.52 -18.73
6 100 9.78 10.62 11.46 8.26 9.18 10.10 -0.33
6 500 14.25 15.40 16.55 11.98 13.34 14.70 -0.45
6 1000 15.35 16.67 17.99 14.35 15.72 17.09 -1.74
6 2000 17.96 19.27 20.58 15.49 16.83 18.17 -0.21
6 5000 21.73 23.17 24.61 18.87 20.31 21.75 -0.03
6 10000 27.93 29.36 30.79 23.35 24.77 26.19 1.74
8 100 9.74 10.58 11.42 8.66 9.74 10.82 -1.08
8 500 14.37 15.56 16.75 11.05 12.21 13.37 1.00
8 1000 15.91 17.23 18.55 13.92 15.34 16.76 -0.85
8 2000 19.07 20.59 22.11 15.16 16.66 18.16 0.92
8 5000 21.53 23.05 24.57 17.77 19.41 21.05 0.48
8 10000 26.40 27.91 29.42 23.30 24.97 26.64 -0.24

10 100 10.26 11.23 12.20 8.20 9.16 10.12 0.14
10 500 13.71 14.76 15.81 12.53 13.88 15.23 -1.52
10 1000 16.48 17.92 19.36 12.80 14.07 15.34 1.15
10 2000 19.24 20.82 22.40 14.69 16.07 17.45 1.79
10 5000 21.06 22.61 24.16 18.75 20.41 22.07 -1.01
10 10000 26.70 28.28 29.86 23.45 25.10 26.75 -0.05

Std Multi

The results of the final query range of 100110001101 are shown in Figure 28 and

Table 9. The results are similar to those of Figure 27 and Table 8, with similar

explanations for why the results look they way they do.

65

100110001101

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 2000 4000 6000 8000 10000 12000

Nodes

C
on

ta
ct

s

4 Levels (Std) 5 Levels (Std) 6 Levels (Std) 8 Levels (Std) 10 Levels (Std)
4 Levels (Multi) 5 Levels (Multi) 6 Levels (Multi) 8 Levels (Multi) 10 Levels (Multi)

Figure 28. 100110001101 Query Results

Figure 23 through Figure 28 and Table 4 through Table 9 provide interesting

insight into the relationship between query precision and skip graph level count. The

figures and tables illustrate that if query precision increases and the number of skip graph

levels remain the same, an increase in extraneous node contacts occur. These extraneous

node contacts degrade query performance because the increased response time needed for

all of the extra messages to be sent. Both types of skip graphs suffer in query

performance if the precision is higher than the number of skip graph levels.

66

Table 9. 100110001101 Mean Node Contacts 95% Confidence Intervals

Levels Nodes L.L. Mean U.L. L.L. Mean U.L. Difference
4 100 9.27 10.13 10.99 9.01 9.96 10.91 -1.64
4 500 13.55 14.55 15.55 14.46 15.55 16.64 -3.09
4 1000 18.83 20.46 22.09 23.00 24.41 25.82 -6.99
4 2000 24.42 26.76 29.10 38.86 40.35 41.84 -17.41
4 5000 41.03 45.48 49.93 83.78 85.76 87.74 -46.71
4 10000 70.71 78.82 86.93 163.35 166.10 168.85 -98.14
5 100 9.02 9.90 10.78 8.62 9.63 10.64 -1.62
5 500 12.65 13.68 14.71 12.57 13.86 15.15 -2.50
5 1000 15.18 16.33 17.48 14.54 15.90 17.26 -2.08
5 2000 18.63 20.04 21.45 18.45 19.89 21.33 -2.70
5 5000 24.75 26.60 28.45 30.24 31.97 33.70 -8.95
5 10000 30.29 32.96 35.63 47.35 49.46 51.57 -21.28
6 100 9.85 10.74 11.63 8.02 8.97 9.92 -0.07
6 500 13.82 15.03 16.24 11.52 12.66 13.80 0.02
6 1000 16.86 18.12 19.38 13.36 14.73 16.10 0.75
6 2000 18.47 19.92 21.37 15.33 16.83 18.33 0.14
6 5000 21.31 22.78 24.25 19.10 20.62 22.14 -0.83
6 10000 23.77 25.25 26.73 24.80 26.31 27.82 -4.05
8 100 9.97 10.88 11.79 8.40 9.43 10.46 -0.49
8 500 14.63 15.78 16.93 12.96 14.31 15.66 -1.02
8 1000 16.22 17.57 18.92 13.03 14.18 15.33 0.89
8 2000 18.74 20.02 21.30 14.13 15.55 16.97 1.77
8 5000 19.51 20.91 22.31 16.03 17.42 18.81 0.70
8 10000 23.29 25.00 26.71 18.35 19.83 21.31 1.98

10 100 9.34 10.27 11.20 8.21 9.09 9.97 -0.63
10 500 13.91 14.92 15.93 11.31 12.50 13.69 0.22
10 1000 15.54 16.71 17.88 13.87 15.25 16.63 -1.10
10 2000 19.01 20.53 22.05 13.65 15.00 16.35 2.66
10 5000 20.67 22.25 23.83 17.60 19.02 20.44 0.24
10 10000 21.83 23.47 25.11 18.65 20.22 21.79 0.05

Std Multi

Another conclusion that can be drawn from the six figures is that increasing the

skip graph level count leads to similar performances for both types of skip graphs. That

is, if the number of skip graph levels is above the required number for efficient query

performance for a particular precision, increasing the number of skip graph levels while

keeping total node count fixed causes the query performances of both skip graphs to be

comparable. In that situation, the total node count in the network needs to increase to see

67

any gains in query performance. Table 6 illustrates this. The multi-dimensional skip

graph outperforms the standard skip graph in almost all node counts above 1000 nodes in

the 4 level scenarios. In the 5 level scenarios immediately below those, node counts need

to increase to over 5000 to see similar performance gains by the multi-dimensional skip

graph.

Table 10 summarizes the analysis of all the query simulations performed. The

values inside the grid indicate which skip graph performs better (as node counts increase)

at the specified number of skip graph levels and precision of query.

Table 10. Summary of Query Performances

Query Precision Number of Levels
 4 5 6 8 10

10XXXXXXXXXX Multi either either either either
1001XXXXXXXX Multi Multi either either either
100110XXXXXX Multi Multi either either either
10011000XXXX Standard Multi Multi either either
1001100011XX Standard Standard either Multi Multi
100110001101 Standard Standard either Multi Multi

At low level counts (e.g., 4) and low query precision (e.g., 10XXXXXXXXXX),

multi-dimensional skip graphs outperform standard skip graphs, especially as node

counts increase. As query precision increases at low level counts, the performance of

standard skip graphs increase compared with the multi-dimensional skip graphs. As level

count increases, with low precision queries the query performances of both skip graph

types are comparable. Finally, as level count increases and higher precision queries are

executed, the multi-dimensional skip graph outperforms the standard skip graph.

68

4.3 Analysis of Mobility

The secondary goal of this research pertains to node mobility. Mobility is an

important factor to consider when discussing the design of skip graphs. Chapter 2 is a

summary of the skip graph invariants that must hold true at all times. Refer to [AsS03]

for a full presentation on maintaining a proper skip graph. Allowing nodes to move has a

significant impact on the structure of a skip graph.

Consider a skip graph in which the keys and membership vectors are

independently computed from geographical positioning. Mobile nodes will certainly

cause pre-existing links to fail, which in turn invalidates neighbor node references in each

level of the skip graph. These invalid references need to be removed, and new references

need to be associated with the node’s new position.

Now consider a skip graph in which the keys and/or membership vectors are

computed directly from geographical position, as in this research. When a node moves to

a new location grid its z-order geographical location value will change as well. In the

standard skip graph, this changes the node’s key value. In the multi-dimensional skip

graph, this changes the node’s membership vector.

The metric used to assess mobility impact is update message count. When a node

determines that its key value or membership vector has changed, the node removes itself

from the skip graph and attempts to reinsert it with the new values.

In a standard skip graph, a query must be performed on the skip graph to

determine where in the base list at L0 the node should needs to be inserted. A query must

be performed because the node’s key has changed and therefore its position in the base

69

list has changed. Then, the node adds itself to the proper list at each level. In a multi-

dimensional skip graph, a query does not need to be performed because the node’s key (a

random value) will not change. The node does, however, need to add itself to the proper

list at each level.

Figure 29 shows the results of the mobility simulation. A full factorial simulation

is performed with levels of 4, 6, 8, and 10, with node counts of 100, 500, 1000, 2000,

5000, and 10000. Similar to the query simulations, each simulation iterates 100 times. In

each of the iterations, a new skip graph of each type is constructed and populated with

random node layouts. A single node is chosen at random, and its coordinates are changed

to other random coordinates. It doesn’t matter how far the node is being moved, the same

node update process is followed.

Mobility Results

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

Total Node Count

M
es

sa
ge

s
Se

nt

4-Level Skip Graph (Std) 6-Level Skip Graph (Std) 8-Level Skip Graph (Std) 10-Level Skip Graph (Std)
4-Level Skip Graph (Multi) 6-Level Skip Graph (Multi) 8-Level Skip Graph (Multi) 10-Level Skip Graph (Multi)

Figure 29. Mobility Results

70

Figure 29 contains 8 data sets. The four data sets that increase linearly are the

results of the standard skip graph simulation. It’s evident that as total node count in the

network is increased, it takes more update messages to fix the skip graph. Also note that

the four data sets that have a relatively flat response. Those are multi-dimensional skip

graph simulations. As the total node count in the network increases, it takes about the

same amount of update messages to fix the skip graph.

The primary reason for the two different responses is that a node insertion into a

standard skip graph must perform a query within the network to determine its position in

the base list L0. As network size increases, that query requires a greater number of

messages to execute. An increase in messages sent implies an increase in the time it takes

to insert the node.

Likewise, a node insertion into a multidimensional query does not need to

perform a query within the network. The node’s key does not change, so its position in

the base list remains the same. The message counts result from the node’s re-assignment

to new linked lists in each level of the skip graph due to the change in the node’s

membership vector. These re-assignment message counts are significantly smaller than

the messages incurred from executing a query within the entire network.

The small increase in the number of messages sent as the number of levels in the

skip graph are increased are because more messages need to be sent as the node iterates

through the levels during an insertion.

Figure 29 shows that multi-dimensional skip graphs are well suited in mobile

networks due to the speed of completing the fix of the skip graph compared with a

71

72

standard skip graph. The amount of time it takes to fix a skip graph is directly

proportional to the number of messages that are sent.

4.4 Summary

This chapter analyzes query execution of both standard and multi-dimensional

skip graphs. Model validation analysis ensures the model implementation is correct. An

analysis of the simulation of six different query ranges is performed, as well as an

analysis on a mobility simulation.

V. Conclusions and Recommendations

This chapter presents the conclusions of this research. A summary of the

conclusions drawn from the simulation results prefaces a discussion of the significance of

those conclusions. Finally, recommendations for future work are discussed.

5.1 Problem Summary

Skip graphs are application layer-based distributed data structure intended for use

in a sensor network where users query sensor data. Nodes in a standard skip graph are

sorted by their key value into successively smaller groups where group membership is

based on random membership vectors computed locally at each node. Multi-dimensional

skip graphs invert the node key and membership vector roles, whereby group

membership is computed deterministically and node keys are computed randomly.

 Simulations determine if this role reversal enables multi-dimensional skip graphs

to increase query performance. Query performance is determined by the number of skip

graph messages sent throughout the network to accomplish the query. A greater number

of messages lead to an increase in network traffic, and longer response times to finish the

query. It is this metric that is minimized. Simulations also determine whether this role

reversal affects performance in light of node mobility.

5.2 Summary of Conclusions Drawn From Results

The results show that the proposed multi-dimensional skip graph executes queries

better under certain conditions. First, the number of levels in the skip graph must be

greater than the precision of the query for multi-dimensional skip graphs to have any

chance of outperforming standard skip graphs. Chapter 4 shows that if this condition is

73

not met, the performance of multi-dimensional skip graph query execution suffers. In the

simulations performed, the standard skip graph outperformed the multi-dimensional skip

graph by 54.5% for a query precision of 6 levels (100110001101) running on 4 level skip

graphs, with a node count of 10000 (cf. Figure 28 and Table 9). When the number of skip

graph levels accommodates query precision, the multi-dimensional skip graph

outperformed the standard skip graph by 8.7%. The scenario that this occurred at was a

query precision of 3 levels (100110XXXXXX) running on 4 levels skip graphs, with a

node count of 10000. Figure 25 and Table 6 show these results.

Second, if the number of skip graph levels accommodates query precision, multi-

dimensional skip graphs outperform standard skip graphs as node counts increase. This is

shown in all of the figures in which the query precision is equal to or less than the

number of levels in the skip graph. As a corollary, as the number of skip graph levels are

increased for each of the skip graph types, a higher node count is required to notice

performance differences. In low node count networks, there is no significant impact on

query performance gained by using one type of skip graph or the other. The query

propagates through the network so fast that both skip graph types process the queries

comparably.

Lastly, if the number of skip graph levels accommodates query precision, as the

range of the query increases, the query performance of both skip graph types become

comparable. The ratio of queried nodes to total nodes is so large that both skip graph

types are able to process the queries comparably.

Multi-dimensional skip graphs are capable of processing mobile node updates

within the skip graph with fewer skip graph messages. In a 10,000 node network, multi-

74

dimensional skip graphs process a mobile node’s skip graph update with 4X fewer

messages. When a node changes geographical locations in the context of a standard skip

graph, a query is required to re-assign the node in the proper position in the base list in

L0. This query is what causes poor mobility performance in a standard skip graph.

Without this query, a multi-dimensional skip graph has an almost flat response as node

count increases. This is in stark contrast to a standard skip graph’s response to increasing

node counts: a corresponding increase in update message counts.

5.3 Significance of Research

DSN technology research is still in its infancy. This research explores avenues

that might lead to more efficient networks. It explores an alternative structure to skip

graphs and shows gains could be made if certain query and skip graph conditions are met.

The research adds to the existing body of work relating to skip graphs, advancing the

state of the art in skip graphs as applied to distributed sensor networks.

5.4 Recommendations for Future Research

This research has several opportunities for future research. Well-structured Java

skip graph models were developed that future research can use. Java allows the models

created in this research to be easily extensible into other versions of skip graphs. The

separation of the model from the simulation controller means skip graph parameter

adjustments can be made and more simulations can be run to evaluate the performance

differences those adjustments caused.

One path of future research involves the amount of underlying network traffic that

involved using skip graphs – both standard and multi-dimensional. Recall that skip

75

graphs reside at the application layer, they are ignorant of the underlying structure of the

routing layer. It would be interesting to analyze how the underlying network

infrastructure is affected using standard or multi-dimensional skip graphs. That particular

information is not addressed in this research, because it is assumed those network costs

are worth the performance gained by using skip graphs, both standard and multi-

dimensional.

Another research path that could be explored is the implementation of a hybrid

skip graph – a combination of the standard and multi-dimensional skip graphs. The

results of this research indicate that there are scenarios in which the multi-dimensional

skip graph outperforms the standard skip graph, but performance suffers when the

previously stated conditions are not met. An analysis of when skip graph usage should

switch between the two types would be beneficial.

5.5 Summary

This chapter presents the conclusions from the simulation results. It discusses the

impact this research has, and offers suggestions for future research.

76

Appendix A: Java Source Code

//Controller Class
package gjb.thesis.controller;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.Random;
import org._3pq.jgrapht.graph.ListenableDirectedGraph;
import gjb.thesis.model.MultiSkipGraph;
import gjb.thesis.model.Node;
import gjb.thesis.model.SkipGraph;
import gjb.thesis.model.StdSkipGraph;
import gjb.thesis.strategy.RandomKey;
import gjb.thesis.strategy.RandomMX;
/**
 * This is the Controller Class. The methods are called from the View
 * Class in response to menu clicks. It's a Singleton Class.
 * @author Greg Brault
 */
public class SkipGraphController {
 private SkipGraph sg = null;
 private int f_numLevels = 4;
 private static final int STD = 0;
 private static final int GJB = 1;
 private static final int KNOWNLAYOUT = 2;
 private static final int RNDLAYOUT = 3;
 private static SkipGraphController ref = null;

 SkipGraphController() {
 sg = new StdSkipGraph(f_numLevels);
 }

 /**
 * The Singleton Constructor
 * @return the Reference to the object
 */
 public static SkipGraphController getInstance() {
 if (ref == null) {
 ref = new SkipGraphController();
 return ref;
 } else return ref;
 }

 /**

77

 * Inits a standard skip graph
 */
 public void initStd() {
 sg = new StdSkipGraph(f_numLevels);
 String zOrderMin = "10000000000000000000000000000000";
 String zOrderMax = "10111111111111111111111111111111";
 int xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 int yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 int xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 int yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 System.out.println("X range: " + xMin + " to " + xMax + ". Y range: " + yMin + "
to " + yMax);

 ArrayList<Node> nodes = buildNodes(STD, KNOWNLAYOUT, 0);
 LinkedList<Node> messages = new LinkedList<Node>();
 LinkedList<Node> route = new LinkedList<Node>();
 LinkedList preDist = new LinkedList();
 LinkedList postDist = new LinkedList();

 for (Node n : nodes) {
 n.setMX();
 sg.add(n);
 if (n.getId() % 2 == 0)
 System.out.print("Node " + n.getId() + " m(x) = " + n.getBinaryMX() + " | ");
 else System.out.println("Node " + n.getId() + " m(x) = " + n.getBinaryMX());
 }

 /*
 sg.search(nodes.get(17), nodes.get(10).getKey(), route, messages);
 System.out.println("Route:");
 for (Node n : route) {
 System.out.print(n.getId() + ", ");
 }
 System.out.println();
 System.out.println("Messages:");
 for (Node n : messages) {
 System.out.print(n.getId() + ", ");
 }
 System.out.println();

78

 LinkedList<Node> query = sg.rangeQueryStd(nodes.get(3), includedNodes,
preDist, postDist, xMin, yMin, xMax, yMax);
 System.out.print("Nodes involved in query (" + includedNodes.size() + "): ");
 for (Node n : includedNodes)
 System.out.print(n.getId() + ", ");
 System.out.println();
 System.out.print("Range query results (" + query.size() + "): ");
 for (Node n : query)
 System.out.print(n.getId() + ", ");
 System.out.println("Pre Distances:");
 for (Object dist : preDist)
 System.out.println((Double) dist);
 System.out.println("Post Distances:");
 for (Object dist : postDist)
 System.out.println((Double) dist);
 */
 }

 /**
 * Inits a multi-dimensional skip graph
 */
 public void initGjb() {
 sg = new MultiSkipGraph(f_numLevels);
 String zOrderMin = "10000000000000000000000000000000";
 String zOrderMax = "10111111111111111111111111111111";
 int xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 int yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 int xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 int yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 System.out.println("X range: " + xMin + " to " + xMax + ". Y range: " + yMin + "
to " + yMax);

 ArrayList<Node> nodes = buildNodes(GJB, KNOWNLAYOUT, 0);
 LinkedList<Node> includedNodes = new LinkedList<Node>();
 LinkedList preDist = new LinkedList();
 LinkedList postDist = new LinkedList();

 for (Node n : nodes) {
 n.setMX();
 sg.add(n);
 if (n.getId() % 2 == 0)

79

 System.out.print("Node " + n.getId() + " m(x) = " + n.getBinaryMX() + " | ");
 else System.out.println("Node " + n.getId() + " m(x) = " + n.getBinaryMX());
 }
 /*
 System.out.println("Node 0 key = " + nodes.get(0).getKey());
 System.out.println("x = " + nodes.get(0).getCoords()[0] + ", y = " +
nodes.get(0).getCoords()[1]);
 int newCoords[] = new int[3];
 newCoords[0] = 62000;
 newCoords[1] = 62000;
 nodes.get(0).setCoords(newCoords);
 nodes.get(0).setMX();
 //nodes.get(0).setKey();
 sg.updateNode(nodes.get(0));
 System.out.println("x = " + nodes.get(0).getCoords()[0] + ", y = " +
nodes.get(0).getCoords()[1]);
 System.out.println("Node 0 key = " + nodes.get(0).getKey());
 System.out.println("Node 0 m(x) = " + nodes.get(0).getBinaryMX());
 LinkedList<Node> query = sg.rangeQuery(nodes.get(10), includedNodes, preDist,
postDist, xMin, yMin, xMax, yMax);
 System.out.print("Nodes involved in query (" + includedNodes.size() + "): ");
 for (Node n : includedNodes)
 System.out.print(n.getId() + ", ");
 System.out.println();
 System.out.print("Range query results (" + query.size() + "): ");
 for (Node n : query)
 System.out.print(n.getId() + ", ");
 System.out.println("Pre Distances:");
 for (Object dist : preDist)
 System.out.println((Double) dist);
 System.out.println("Post Distances:");
 for (Object dist : postDist)
 System.out.println((Double) dist);
 */
 }

 /**
 * Builds a skip graph based on the parameters
 * @param type Skip graph type (standard or multi-dim)
 * @param layout Known Layout or Randomized Layout
 * @param size # of nodes
 * @return the Skip graph
 */
 private ArrayList<Node> buildNodes(int type, int layout, int size) {
 ArrayList<Node> nodes = new ArrayList<Node>();

80

 if (layout == KNOWNLAYOUT) {
 if (type == STD) {
 nodes.add(0, new Node(0, new RandomMX(2), f_numLevels, 0, 0, 0));
 nodes.add(1, new Node(1, new RandomMX(2), f_numLevels, 33000,
33000, 0));
 nodes.add(2, new Node(2, new RandomMX(2), f_numLevels, 34000,
51000, 0));
 nodes.add(3, new Node(3, new RandomMX(2), f_numLevels, 6000, 4000,
0));
 nodes.add(4, new Node(4, new RandomMX(2), f_numLevels, 36000,
44000, 0));
 nodes.add(5, new Node(5, new RandomMX(2), f_numLevels, 39000, 7500,
0));
 nodes.add(6, new Node(6, new RandomMX(2), f_numLevels, 12000,
64000, 0));
 nodes.add(7, new Node(7, new RandomMX(2), f_numLevels, 3000, 12000,
0));
 nodes.add(8, new Node(8, new RandomMX(2), f_numLevels, 36000,
17000, 0));
 nodes.add(9, new Node(9, new RandomMX(2), f_numLevels, 5000, 22000,
0));
 nodes.add(10, new Node(10, new RandomMX(2), f_numLevels, 2500,
37000, 0));
 nodes.add(11, new Node(11, new RandomMX(2), f_numLevels, 4000,
60000, 0));
 nodes.add(12, new Node(12, new RandomMX(2), f_numLevels, 12000,
59000, 0));
 nodes.add(13, new Node(13, new RandomMX(2), f_numLevels, 34000,
4000, 0));
 nodes.add(14, new Node(14, new RandomMX(2), f_numLevels, 16000,
58000, 0));
 nodes.add(15, new Node(15, new RandomMX(2), f_numLevels, 34000,
63000, 0));
 nodes.add(16, new Node(16, new RandomMX(2), f_numLevels, 48000,
45000, 0));
 nodes.add(17, new Node(17, new RandomMX(2), f_numLevels, 54000,
7000, 0));
 nodes.add(18, new Node(18, new RandomMX(2), f_numLevels, 56000,
20000, 0));
 nodes.add(19, new Node(19, new RandomMX(2), f_numLevels, 27000,
27000, 0));
 } else if (type == GJB) {
 nodes.add(0, new Node(0, new RandomKey(2), f_numLevels, 2000, 2000,
0));

81

 nodes.add(1, new Node(1, new RandomKey(2), f_numLevels, 33000,
33000, 0));
 nodes.add(2, new Node(2, new RandomKey(2), f_numLevels, 34000,
51000, 0));
 nodes.add(3, new Node(3, new RandomKey(2), f_numLevels, 6000, 4000,
0));
 nodes.add(4, new Node(4, new RandomKey(2), f_numLevels, 36000,
44000, 0));
 nodes.add(5, new Node(5, new RandomKey(2), f_numLevels, 39000, 7500,
0));
 nodes.add(6, new Node(6, new RandomKey(2), f_numLevels, 12000,
64000, 0));
 nodes.add(7, new Node(7, new RandomKey(2), f_numLevels, 3000, 12000,
0));
 nodes.add(8, new Node(8, new RandomKey(2), f_numLevels, 36000,
17000, 0));
 nodes.add(9, new Node(9, new RandomKey(2), f_numLevels, 5000, 22000,
0));
 nodes.add(10, new Node(10, new RandomKey(2), f_numLevels, 2500,
37000, 0));
 nodes.add(11, new Node(11, new RandomKey(2), f_numLevels, 4000,
60000, 0));
 nodes.add(12, new Node(12, new RandomKey(2), f_numLevels, 12000,
59000, 0));
 nodes.add(13, new Node(13, new RandomKey(2), f_numLevels, 33000,
2000, 0));
 nodes.add(14, new Node(14, new RandomKey(2), f_numLevels, 16000,
58000, 0));
 nodes.add(15, new Node(15, new RandomKey(2), f_numLevels, 34000,
63000, 0));
 nodes.add(16, new Node(16, new RandomKey(2), f_numLevels, 48000,
45000, 0));
 nodes.add(17, new Node(17, new RandomKey(2), f_numLevels, 54000,
7000, 0));
 nodes.add(18, new Node(18, new RandomKey(2), f_numLevels, 56000,
20000, 0));
 nodes.add(19, new Node(19, new RandomKey(2), f_numLevels, 27000,
27000, 0));
 }
 } else if (layout == RNDLAYOUT) {
 if (type == STD) {
 for (int a = 0; a < size; a++) {
 nodes.add(a, new Node(a, new RandomMX(2), f_numLevels));
 }
 } else if (type == GJB) {

82

 for (int a = 0; a < size; a++) {
 nodes.add(a, new Node(a, new RandomKey(2), f_numLevels));
 }
 }
 }
 return nodes;
 }

 /**
 * Runs the main simulation
 */
 public void runExperiment() {
 Random startId = new Random();
 //double nodeCntStd = 0;
 //double nodeCntGjb = 0;
 //double querySizeStd = 0;
 //double querySizeGjb = 0;
 int xMin, xMax, yMin, yMax;
 String zOrderMin = null;
 String zOrderMax = null;
 SkipGraph sgExpStd = null;
 SkipGraph sgExpGjb = null;

 int numIterations = 100;
 int numNodes = 0;

 for (int d = 2; d < 3; d++) {
 switch (d) {
 case 0:
 zOrderMin = new String("10000000000000000000000000000000");
 zOrderMax = new String("10111111111111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 case 1:
 zOrderMin = new String("10010000000000000000000000000000");
 zOrderMax = new String("10011111111111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());

83

 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 case 2:
 zOrderMin = new String("10011000000000000000000000000000");
 zOrderMax = new String("10011011111111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 case 3:
 zOrderMin = new String("10011000000000000000000000000000");
 zOrderMax = new String("10011000111111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 case 4:
 zOrderMin = new String("10011000110000000000000000000000");
 zOrderMax = new String("10011000111111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 case 5:
 zOrderMin = new String("10011000110100000000000000000000");

84

 zOrderMax = new String("10011000110111111111111111111111");
 xMin = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 yMin = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMin,
2)).intValue());
 xMax = Node.zOrderX(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 yMax = Node.zOrderY(Long.valueOf(Long.parseLong(zOrderMax,
2)).intValue());
 break;
 default:
 zOrderMin = new String();
 zOrderMax = new String();
 xMin = 0;
 yMin = 0;
 xMax = 0;
 yMax = 0;
 break;
 }
 System.out.println("X range: " + xMin + " to " + xMax + ". Y range: " + yMin +
" to " + yMax);
 System.out.println("Z-order min: " + zOrderMin);
 System.out.println("Z-order max: " + zOrderMax);
 System.out.println("** Type * Iter * Levels * Nodes * Contacts * Query Size
**");
 for (int c = 0; c < 5; c++) {
 switch (c) {
 case 0:
 f_numLevels = 4;
 break;
 case 1:
 f_numLevels = 5;
 break;
 case 2:
 f_numLevels = 6;
 break;
 case 3:
 f_numLevels = 8;
 break;
 case 4:
 f_numLevels = 10;
 break;
 }
 for (int b = 0; b < 6; b++) {
 switch (b) {

85

 case 0:
 numNodes = 100;
 break;
 case 1:
 numNodes = 500;
 break;
 case 2:
 numNodes = 1000;
 break;
 case 3:
 numNodes = 2000;
 break;
 case 4:
 numNodes = 5000;
 break;
 case 5:
 numNodes = 10000;
 break;
 }
 //nodeCntStd = 0;
 //nodeCntGjb = 0;
 //querySizeStd = 0;
 //querySizeGjb = 0;
 for (int a = 0; a < numIterations; a++) {
 sgExpStd = new StdSkipGraph(f_numLevels);
 sgExpGjb = new MultiSkipGraph(f_numLevels);
 ArrayList<Node> nodesStd = buildNodes(STD, RNDLAYOUT,
numNodes);
 ArrayList<Node> nodesGjb = new ArrayList<Node>();
 int ctr = 0;
 Node n2 = null;
 for (Node n : nodesStd) {
 n.setMX();
 sgExpStd.add(n);
 nodesGjb.add(ctr, new Node(ctr, new RandomKey(2), f_numLevels,
 n.getCoords()[0], n.getCoords()[1], 0));
 n2 = nodesGjb.get(ctr);
 n2.setMX();
 sgExpGjb.add(n2);
 ctr++;
 }
 LinkedList<Node> includedNodesStd = new LinkedList<Node>();
 LinkedList<Node> includedNodesGjb = new LinkedList<Node>();
 LinkedList preDistStd = new LinkedList();
 LinkedList postDistStd = new LinkedList();

86

 LinkedList preDistGjb = new LinkedList();
 LinkedList postDistGjb = new LinkedList();

 int start = startId.nextInt(nodesStd.size());
 //if ((a+1) % 25 == 0)
 // System.out.println("Iteration " + (a+1) + ", query start = Node " +
start);
 LinkedList<Node> queryStd =
sgExpStd.rangeQuery(nodesStd.get(start),
 includedNodesStd, preDistStd, postDistStd, xMin, yMin, xMax,
yMax);
 LinkedList<Node> queryGjb =
sgExpGjb.rangeQuery(nodesGjb.get(start),
 includedNodesGjb, preDistGjb, postDistGjb, xMin, yMin, xMax,
yMax);
 int avgPreDistStd = 0;
 int avgPostDistStd = 0;
 int avgPreDistGjb = 0;
 int avgPostDistGjb = 0;
 // preDistStd
 for (Object dist : preDistStd)
 avgPreDistStd += (Double)dist;
 if (preDistStd.size() != 0)
 avgPreDistStd /= preDistStd.size();
 // postDistStd
 for (Object dist : postDistStd)
 avgPostDistStd += (Double)dist;
 if (postDistStd.size() != 0)
 avgPostDistStd /= postDistStd.size();
 // preDistGjb
 for (Object dist : preDistGjb)
 avgPreDistGjb += (Double)dist;
 if (preDistGjb.size() != 0)
 avgPreDistGjb /= preDistGjb.size();
 // postDistGjb
 for (Object dist : postDistGjb)
 avgPostDistGjb += (Double)dist;
 if (postDistGjb.size() != 0)
 avgPostDistGjb /= postDistGjb.size();
 System.out.print("Std, "+a+", "+f_numLevels+", "+numNodes+",
 "+includedNodesStd.size()+", "+avgPreDistStd+",
"+avgPostDistStd+", , ");
 System.out.println("Gjb, "+a+", "+f_numLevels+", "+numNodes+",
 "+includedNodesGjb.size()+", "+avgPreDistGjb+",
"+avgPostDistGjb+", "+queryGjb.size());

87

 //nodeCntStd += includedNodesStd.size();
 //nodeCntGjb += includedNodesGjb.size();
 //querySizeStd += queryStd.size();
 //querySizeGjb += queryGjb.size();
 }
 System.out.println();
 System.out.println();
 //nodeCntStd /= numIterations;
 //nodeCntGjb /= numIterations;
 //querySizeStd /= numIterations;
 //querySizeGjb /= numIterations;
 //System.out.println("Std (" + numLevels + " levels, " + numNodes + "
total nodes) : " + nodeCntStd + " (avg) nodes contacted. " +
querySizeStd + " (avg) nodes returned in query.");
 //System.out.println("Gjb (" + numLevels + " levels, " + numNodes + "
total nodes) : " + nodeCntGjb + " (avg) nodes contacted. " +
querySizeGjb + " (avg) nodes returned in query.");

 }
 }
 }
 }

 /**
 * Runs the Mobility Simulation
 */
 public void runMobilityExperiment() {
 int numNodes = 0;
 int numIterations = 100;
 SkipGraph stdSG = null;
 SkipGraph multiSG = null;
 for (int numLevels = 4; numLevels <= 10; numLevels+=2) {
 for (int numNodeCnt = 0; numNodeCnt < 6; numNodeCnt++) {
 switch (numNodeCnt) {
 case 0:
 numNodes = 100;
 break;
 case 1:
 numNodes = 500;
 break;
 case 2:
 numNodes = 1000;
 break;
 case 3:
 numNodes = 2000;

88

 break;
 case 4:
 numNodes = 5000;
 break;
 case 5:
 numNodes = 10000;
 break;
 }
 int numStdMsgs = 0;
 int numMultiMsgs = 0;
 for (int a = 0; a < numIterations; a++) {
 stdSG = new StdSkipGraph(numLevels);
 multiSG = new MultiSkipGraph(numLevels);
 // build symmetric skip graphs
 ArrayList<Node> nodesStd = buildNodes(STD, RNDLAYOUT,
numNodes);
 ArrayList<Node> nodesMulti = new ArrayList<Node>();
 int ctr = 0;
 Node n2 = null;
 for (Node n : nodesStd) {
 n.setMX();
 stdSG.add(n);
 nodesMulti.add(ctr, new Node(ctr, new RandomKey(2), f_numLevels,
 n.getCoords()[0], n.getCoords()[1], 0));
 n2 = nodesMulti.get(ctr);
 n2.setMX();
 multiSG.add(n2);
 ctr++;
 }
 // move the same node the same distance in each graph, keep track of
message counts
 int randomNode = (new Random()).nextInt(numNodes);
 Node movStdNode = nodesStd.get(randomNode);
 Node movMultiNode = nodesMulti.get(randomNode);
 int newStdCoords[] = new int[3];
 int newMultiCoords[] = new int[3];
 int newX = (new Random()).nextInt() & 0xFFFF;
 int newY = (new Random()).nextInt() & 0xFFFF;
 newStdCoords[0] = newX;
 newStdCoords[1] = newY;
 newStdCoords[2] = 0;
 newMultiCoords[0] = newX;
 newMultiCoords[1] = newY;
 newMultiCoords[2] = 0;
 // modify Standard SG coordinates

89

 movStdNode.setCoords(newStdCoords);
 movStdNode.setKey();
 numStdMsgs += stdSG.updateNode(movStdNode);
 // modify Multi-Dim SG coordinates
 movMultiNode.setCoords(newMultiCoords);
 movMultiNode.setMX();
 numMultiMsgs += multiSG.updateNode(movMultiNode);
 }

 System.out.println("Levels\t"+numLevels+"\tNodes\t"+numNodes+"\tStdMessages\t"
+

 numStdMsgs/numIterations+"\tMultiMessages\t"+numMultiMsgs/numIterations);
 }
 }

 LinkedList<Node> messages = new LinkedList<Node>();
 LinkedList<Node> route = new LinkedList<Node>();
 }

 /**
 * Moves a node within the skip graph
 */
 public void moveANode() {
 ArrayList<Node> nodes = sg.getNodes();
 int newCoords[] = new int[3];
 newCoords[0] = 64000;
 newCoords[1] = 64000;
 nodes.get(0).setCoords(newCoords);
 nodes.get(0).setKey();
 nodes.get(0).setMX();
 System.out.println("Node " + nodes.get(0).getId() + ": " +
sg.updateNode(nodes.get(0)));
 }

 public LinkedList<HashMap<Integer, ListenableDirectedGraph>> getDirectedGraph()
{
 return sg.getDirectedGraph();
 }
}

//Node Class
package gjb.thesis.model;
import gjb.thesis.strategy.AbstractCreate;

90

import gjb.thesis.strategy.KeyMXCreation;

import java.util.Random;

/**
 * Node Class. Nodes belong to a skip graph.
 * @author Chris Augeri
 * @author Greg Brault
 */
public class Node implements KeyMXCreation, Comparable {
 public static final int maxCoord = 65535; // max 16 bit number
 // strategy
 private AbstractCreate f_strategy;
 // id of this mote
 private int f_id = 0;
 // key
 private Integer f_key = new Integer(0);
 // membership vector
 private int f_mx = 0;
 // used to calculate the membership vectors
 private int[] f_coords = new int[3];

 private int numLevels = 0;

 public Node(int id, AbstractCreate strategy, int numLevels) {
 assert (strategy != null);
 this.numLevels = numLevels;
 f_id = id;
 f_strategy = strategy;
 // set coordinates
 Random random = new Random();
 f_coords[0] = random.nextInt() & 0xFFFF;
 f_coords[1] = random.nextInt() & 0xFFFF;
 f_coords[2] = 0; // keep it in 2D
 setKey();
 }

 /**
 * Additional constructor to allow for geographical positioning
 * @param id
 * @param strategy
 * @param x x coordinate location
 * @param y y coordinate location
 * @param z z coordinate location
 */

91

 public Node(int id, AbstractCreate strategy, int numLevels, int x, int y, int z) {
 assert (strategy != null);
 this.numLevels = numLevels;
 f_id = id;
 f_strategy = strategy;
 // set coordinates
 f_coords[0] = x & 0xFFFF;
 f_coords[1] = y & 0xFFFF;
 f_coords[2] = 0; // keep it in 2D
 setKey();
 }

 public int getId() {
 return f_id;
 }

 /**
 * Creates a z-ordering from the individual integers of x and y. Assumes that x and y
are 16 bit
 * integers, and returns a 32 bit interleaving of their bits.
 * @param x
 * @param y
 * @return
 */
 public static int zOrder(int x, int y) {
 int mask = 0x8000; // start with bit 16 of coordinates
 int interleavedBits = 0; // initialize m(x)

 // interleave bits of x and y to get our mx
 for (int a = 16; a > 0; a--) {
 interleavedBits |= ((x & mask) << a); // OR x bit into mx
 interleavedBits |= ((y & mask) << (a-1)); // OR y bit into mx (one to the left of x
bit)
 mask >>>= 1; // prepare to mask next bit of x and y
coordinates
 }
 return interleavedBits;
 }

 /**
 * @param zOrder 32 bit zOrder value
 * @return X coordinate from the zOrder
 */
 public static int zOrderX(int zOrder) {
 int mask = 0x80000000;

92

 int result = 0;
 for (int a = 16; a > 0; a--) {
 result |= ((zOrder & mask) >>> a);
 mask >>>= 2; // right shift by 2 (interleaved bits in zOrder)
 }
 return result;
 }

 /**
 * @param zOrder 32 bit zOrder value
 * @return Y coordinate from the zOrder
 */
 public static int zOrderY(int zOrder) {
 int mask = 0x40000000;
 int result = 0;
 for (int a = 15; a >= 0; a--) {
 result |= ((zOrder & mask) >>> a);
 mask >>>= 2; // right shift by 2 (interleaved bits in zOrder)
 }
 return result;
 }
 /**
 * Gets the prefix mask bits for two z-ordered numbers (x and y)
 * @param x z-ordered number
 * @param y z-ordered number
 * @return a bit sequence representing which bits are "don't care"
 * a 1 means we care about the bit value at that position
 * a 0 means we don't care about the bit value at that position
 */
 public static int getMxPrefixMask(int x, int y) {
 int mxPrefixMask = 0;
 int mask = 0x80000000;

 for (int a = 0; a < 32; a++) {
 if ((x & mask) == (y & mask))
 mxPrefixMask |= mask;
 mask >>>= 1;
 }
 return mxPrefixMask;
 }

 /**
 * Gets the prefix of two z-ordered numbers. getMxPrefixMask() will tell us which
 * bit locations we should care about whether they are 1 or 0.
 * @param x - z-ordered number

93

 * @param y - z-ordered number
 * @return - bit sequence in which identical bit locations between params x and y
 * are set to their respective values, and all other bits will be 0 (the prefixMask
 * will be used to ignore those locations).
 */
 public static int getMxPrefix(int x, int y) {
 int mxPrefix = 0;
 int mask = 0x80000000;

 for (int a = 0; a < 32; a++) {
 if ((x & mask) == (y & mask))
 mxPrefix |= (x & mask);
 mask >>>= 1;
 }
 return mxPrefix;
 }
 /**
 * Used to sort the nodes in an Array (list at a particular level of the SkipGraph)
 * Always sorted on Key.
 * @param arg0
 * @return
 */
 public int compareTo(Object arg0) {
 if (this.getClass() != arg0.getClass())
 throw new ClassCastException();
 Node other = (Node)arg0;
 if (this.getKey() < other.getKey()) return -1;
 else if (this.getKey() > other.getKey()) return 1;
 else return 0;
 }

 /**
 * Compare this node's key with another node. Returns in the same way
 * compareTo returns.
 * @param otherNode
 */
 public int compareKey(Node otherNode) {
 if (this.getKey() < otherNode.getKey()) return -1;
 else if (this.getKey() > otherNode.getKey()) return 1;
 else return 0;
 }

 /**
 * Compare this node's m(x) with another node. Returns in the same way
 * compareTo returns.

94

 * @param otherNode
 */
 public int compareMX(Node otherNode) {
 if (this.getMX() < otherNode.getMX()) return -1;
 else if (this.getMX() > otherNode.getMX()) return 1;
 else return 0;
 }

 public int[] getCoords() {
 return f_coords;
 }

 public void setCoords(int[] coords) {
 f_coords = coords;
 }

 public int getMX() {
 return f_mx;
 }

 public int getNumLevels() {
 return numLevels;
 }

 public String getBinaryMX() {
 StringBuffer mx = new StringBuffer(Integer.toBinaryString(f_mx));
 if (mx.length() < (2*numLevels - 2)) {
 int length = mx.length();
 for (int a = 0; a < ((2*numLevels - 2) - length); a++)
 mx = mx.insert(0, "0");
 }
 return mx.toString();
 }

 public Integer getKey() {
 return f_key;
 }

 public void setMX() {
 f_mx = f_strategy.setMX(this);
 }

 public void setKey() {
 f_key = f_strategy.setKey(this);
 }

95

 public void setKey(Integer key) {
 f_key = key;
 }
}

//SkipGraph Class
package gjb.thesis.model;

import java.util.Collections;
import java.util.Collection;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.List;
import java.util.LinkedList;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Random;
import java.util.Set;
import java.lang.reflect.Array;

import org._3pq.jgrapht.graph.ListenableDirectedGraph;
import org._3pq.jgrapht.edge.DirectedEdge;

/**
 * Abstract Skip Graph Class. Sub-classed into Standard
 * or Multi-Dimensional Skip graphs.
 *
 * @author Chris Augeri
 * @author Greg Brault
 */
public abstract class SkipGraph implements Collection {
 protected boolean debug = false;
 protected int numLevels = 6;
 protected HashMap<Node, Integer> mxMap;
 protected ListenableDirectedGraph[] skipGraph;
 protected ArrayList<Node>[][] skipGraphKeys;
 protected int numMsgsForLastAdd = 0;

 public int getNumLevels() {
 return numLevels;
 }

 public void setDebug(boolean debug) {
 this.debug = debug;

96

 }

 /**
 * @see java.util.Collection#size()
 */
 public int size() {
 if (skipGraphKeys[0][0] == null) {
 return 0;
 } else {
 return skipGraphKeys[0][0].size();
 }
 }

 /**
 * @see java.util.Collection#isEmpty()
 */
 public boolean isEmpty() {
 if (skipGraphKeys[0][0] == null || skipGraphKeys[0][0].size() == 0)
 return true;
 else return false;
 }

 /**
 * @see java.util.Collection#contains(java.lang.Object)
 */
 public boolean contains(Object o) {
 if (skipGraphKeys[0][0] != null && skipGraphKeys[0][0].contains(o)) {
 return true;
 } else return false;
 }

 /**
 * @see java.util.Collection#add(E)
 */
 @SuppressWarnings("unchecked")
 public boolean add(Object toAdd) {
 Integer mx;
 numMsgsForLastAdd = 0;
 Node node = (Node)toAdd;
 ArrayList<Node> baseList = skipGraphKeys[0][0];
 LinkedList<Node> route = new LinkedList<Node>();
 LinkedList<Node> messages = new LinkedList<Node>();

 // find a random node to begin insert at
 Node insertAt = null;

97

 if (baseList != null)
 insertAt = baseList.get((new Random()).nextInt(baseList.size()));

 // initialize to # of messages it takes to find where we are to insert at base list
 numMsgsForLastAdd = search(insertAt, node.getKey(), route, messages);
 // 1 msg from new node to existing node, and from existing node to other side node.
And from other // side node to new node
 numMsgsForLastAdd += 3;

 if (!mxMap.containsKey(node)) {
 mx = node.getMX();
 mxMap.put(node, mx);
 } else {
 mx = mxMap.get(node);
 }

 // add ourselves to the appropriate membership vector at each level
 for (int level = 0; level < numLevels; level++) {
 mx = getMXleft(level, node);
 int i = 0;
 if (skipGraphKeys[level][mx] == null) {
 skipGraphKeys[level][mx] = new ArrayList<Node>();
 } else {
 i = Collections.binarySearch((List) skipGraphKeys[level][mx], node);
 }
 if (i < 0 || (i == 0 && skipGraphKeys[level][mx].size() == 0)) {
 skipGraphKeys[level][mx].add(node);
 Collections.sort(skipGraphKeys[level][mx]);
 }
 numMsgsForLastAdd += findBuddies(node, level, mx);
 }
 return true;
 }

 /**
 * @return the number of skip graph messages required for the most
 * recent node addition
 */
 public int getNumMessagesFromAdd() {
 return numMsgsForLastAdd;
 }

 public ArrayList<Node> getNodes() {
 return skipGraphKeys[0][0];
 }

98

 public boolean remove(Object toRemove) {
 Node node = (Node)toRemove;
 if (skipGraphKeys[0][0].contains(node)) {
 for (int i = 0; i < numLevels; i++) {
 int mx = getMXleft(i, node);
 skipGraphKeys[i][mx].remove(node);
 if (skipGraphKeys[i][mx].size() == 0)
 skipGraphKeys[i][mx] = null;
 }
 mxMap.remove(node);
 return true;
 } else return false;
 }

 /**
 * Clears the "view" related variables used to display the skip graph
 */
 @SuppressWarnings("unchecked")
 public void clear() {
 // a Map from our Mote to the (full) membership vector of that Mote
 mxMap = new HashMap<Node, Integer>();
 // list of Motes in a particular membership vector at a particular level
 ArrayList<Node> t = new ArrayList<Node>();
 // http://www.developertutorials.com/tutorials/java/java-theory-generic-
050323/page3.html
 ArrayList<Node>[] tSubList = (ArrayList<Node>[])
Array.newInstance(t.getClass(), 1);
 // http://java.sun.com/docs/books/tutorial/reflect/array/newInstance.html
 skipGraphKeys = (ArrayList<Node>[][]) Array.newInstance(
 tSubList.getClass(), numLevels);
 // add an array of ArrayList<E> at each level
 for (int level = 0; level < numLevels; level++) {
 t = new ArrayList<Node>();
 skipGraphKeys[level] = (ArrayList<Node>[]) Array.newInstance(
 t.getClass(), (1 << (2*level)));
 }
 clearGraph();
 }

 /**
 * Calculates number of messages needed to find buddies on either side of node
 * @param needsBuddies Node that needs MX buddies
 * @param level Which level we're in
 * @param val needsBuddies's MX value

99

 * @return number of messages it took
 */
 protected int findBuddies(Node needsBuddies, int level, Integer val) {
 // only calculate msgs for levels 1 and up
 if (level > 0) {
 int numMessages = 1; // send buddyOp to nodeLeft on level below
 ArrayList<Node> mxList = skipGraphKeys[level-1][getMXleft(level-1,
needsBuddies)];
 boolean foundBuddy = true;
 int j = mxList.indexOf(needsBuddies);
 j--;

 if (j >= 0) {
 while (j >= 0 && getMXleft(level, needsBuddies) != getMXleft(level,
mxList.get(j))) {
 j--;
 numMessages++; // send buddyOp to next node in list to the left
 }
 numMessages++; // send reply for buddyOp
 }
 // if we reached the end of the list then check to the right
 if (j < 0) {
 j = mxList.indexOf(needsBuddies);
 j++;
 if (j < mxList.size()) {
 while (j < mxList.size() && getMXleft(level, needsBuddies) !=
getMXleft(level, mxList.get(j))) {
 j++;
 numMessages++; // send buddyOp to next node in list to the left
 }
 numMessages++; // send reply for buddyOp
 if (j == mxList.size()) foundBuddy = false;
 } else foundBuddy = false;
 }
 // only count messages if we've found other nodes with our membership vector.
Otherwise, we // are in our own
 // membership vector and so no messages are sent
 if (foundBuddy)
 numMessages += 3; // send linkOps to re-link surrounding buddies
 return numMessages;
 } else return 0;
 }

 /**

100

 * Abstract moveNode method must be implemented differently for Standard
SkipGraphs
 * and MultiDim SkipGraphs
 *
 * @return number of messages sent to accomplish the update
 */
 public abstract int updateNode(Node toUpdate);

 /**
 * Initialize the graph structure -- could grow one at a time, but makes
 * listening more challenging.
 */
 protected void initGraph() {
 int i;
 skipGraph = new ListenableDirectedGraph[numLevels];
 for (i = 0; i < numLevels; i++) {
 skipGraph[i] = new ListenableDirectedGraph();
 }
 }

 /**
 * Clear all entries in a given graph -- do not want to erase graphs in case
 * someone is listening.
 */
 private void clearGraph() {
 for (int i = 0; i < numLevels; i++) {
 Set v = skipGraph[i].vertexSet();
 if (v != null) {
 skipGraph[i].removeAllVertices(v);
 }
 }
 }

 /**
 * @param l
 * Skip Graph Level, 0 <= (l)evel < MAX_SKIP_LEVELS
 * @param o
 * Key, 0 <= (k)ey <= Integer.MAX_VALUE
 * @return Membership vector for a given (l)evel and (k)ey
 */
 protected int getMXleft(int level, Node node) {
 // removed leading left bits
 int mx = mxMap.get(node);
 // remove trailing right bits;
 // L0: mx >>>= 8-0-2 = 6

101

 // L1: mx >>>= 8-2-2 = 4
 // L2: mx >>>= 8-4-2 = 2
 // L3: mx >>>= 8-6-2 = 0
 mx >>>= (2*numLevels - (2*level) - 2);
 return mx;
 }

 /**
 * This method returns a LinkedList (representing the different levels of the skip
graph)
 * of LinkedLists (representing the different membership vectors) of
ListenableDirectedGraphs
 * (representing the individual nodes in each m(x)
 * @return
 */
 public LinkedList<HashMap<Integer,ListenableDirectedGraph>> getDirectedGraph()
{
 int level, mx;
 LinkedList<HashMap<Integer, ListenableDirectedGraph>> result =
 new LinkedList<HashMap<Integer, ListenableDirectedGraph>>();
 // not very clean, done as I don't know how to reference the same
 // object in a JGraph
 for (level = 0; level < numLevels; level++) {
 result.add(new HashMap<Integer, ListenableDirectedGraph>());
 for (mx = 0; mx < (1 << (2*level)); mx++) {
 if (skipGraphKeys[level][mx] != null) {
 result.get(level).put(Integer.valueOf(mx), new
ListenableDirectedGraph());

 result.get(level).get(Integer.valueOf(mx)).addAllVertices(skipGraphKeys[level][mx]);
 //skipGraph[level].addAllVertices(skipGraphKeys[level][mx]);
 ListIterator<Node> vl = skipGraphKeys[level][mx].listIterator();
 Node v1 = vl.next();
 Node v2;
 while (vl.hasNext()) {
 v2 = vl.next();
 result.get(level).get(mx).addEdge(new DirectedEdge(v1, v2));
 //skipGraph[level].addEdge(new DirectedEdge(v1, v2));
 v1 = v2;
 }
 }
 }
 }
 return result;
 }

102

 /**
 * Searches for a node with the closest matching of the search key
 * @return number of messages the search took.
 */
 public int search(Node startNode, Integer key, LinkedList<Node> route,
LinkedList<Node> messages) {
 // check if startNode exists
 if (mxMap.containsKey(startNode)) {
 route.add(startNode);
 if (startNode.getKey() != key)
 return search(startNode, startNode, key, route, messages, numLevels -1);
 else return 0;
 } else return 0;
 }

 /**
 * Recursive internal method that checks to see if it can continue searching in the
current
 * level. If so, it will call itself again with the next-in-line node. If not, it will drop
 * down to the next level and continue with the current node.
 *
 */
 private int search(Node startNode, Node fromNode, Integer key, LinkedList<Node>
route, LinkedList<Node> messages, int level) {
 int j;
 ArrayList<Node> list;

 switch (fromNode.getKey().compareTo(key)) {
 case 0: {
 // fromNode.key = key, we found a direct match
 route.add(startNode);
 messages.add(startNode);
 return messages.size();
 }
 case -1: {
 // fromNode.key < key, go right
 list = skipGraphKeys[level][getMXleft(level, fromNode)];
 j = list.indexOf(fromNode);
 j++;
 // traverse in this membership vector until we match, hit the end, or go to far
keywise
 while (j < list.size() && list.get(j).getKey().compareTo(key) == -1) {
 if (messages.size() == 0 || messages.getLast() != list.get(j))
 messages.add(list.get(j));

103

 route.add(list.get(j));
 j++;
 }
 if (j == list.size()) {
 // end of list. Go to lower level if we're not already at level 0
 if (level > 0)
 return search(startNode, list.get(j-1), key, route, messages, level-1);
 else return messages.size();
 } else {
 // include the message to the node that either had the key, or key out of range
 if (messages.size() == 0 || messages.getLast() != list.get(j))
 messages.add(list.get(j));
 // we've found a node that has that key
 if (list.get(j).getKey().compareTo(key) == 0) {
 // add the node to the route, and final message to start node
 route.add(list.get(j));
 messages.add(startNode);
 return messages.size();
 } else {
 // key is out of range. Go to lower level if we're not already at level 0
 if (level > 0)
 return search(startNode, list.get(j-1), key, route, messages, level-1);
 else return messages.size();
 }
 }
 }
 case 1: {
 // fromNode.key > key, go left
 list = skipGraphKeys[level][getMXleft(level, fromNode)];
 j = list.indexOf(fromNode);
 j--;
 // traverse in this membership vector until we match, hit the beginning, or go to
far keywise
 while (j >= 0 && list.get(j).getKey().compareTo(key) == 1) {
 if (messages.size() == 0 || messages.getLast() != list.get(j))
 messages.add(list.get(j));
 route.add(list.get(j));
 j--;
 }
 if (j < 0) {
 // beginning of list. Go to lower level if we're not already at level 0
 if (level > 0) {
 return search(startNode, list.get(0), key, route, messages, level-1);
 } else {
 return messages.size();

104

 }
 } else {
 // include the message to the node that either had the key, or key out of range
 if (messages.size() == 0 || messages.getLast() != list.get(j))
 messages.add(list.get(j));
 // we've found a node that has that key
 if (list.get(j).getKey().compareTo(key) == 0) {
 // add the node to the route, and final message to start node
 route.add(list.get(j));
 messages.add(startNode);
 return messages.size();
 } else {
 // key is out of range. Go to lower level if we're not already at level 0
 if (level > 0)
 return search(startNode, list.get(0), key, route, messages, level-1);
 else return messages.size();
 }
 }
 }
 default: return 0; // will never get here. Switch is on a compareTo() => -1, 0, 1
 }
 }

 /**
 * Executes a range query in the skip graph
 * @param minKey - Inclusive minimum key value to look for
 * @param maxKey - Inclusive maximum key value to look for
 * @param startKey - node Id to start with
 * @return
 */
 abstract public LinkedList<Node> rangeQuery(Node startNode, LinkedList<Node>
includedNodes, LinkedList preDist, LinkedList postDist, int xMin, int yMin, int
xMax, int yMax);

 /**
 * @see java.util.Collection#iterator()
 */
 public Iterator<Node> iterator() {
 return skipGraphKeys[0][0].iterator();
 }

 /**
 * @see java.util.Collection#toArray()
 */
 public Object[] toArray() {

105

 return skipGraphKeys[0][0].toArray();
 }

 /**
 * @see java.util.Collection#containsAll(java.util.Collection)
 */
 public boolean containsAll(Collection c) {
 boolean containsAll = true;
 for (Object o : c) {
 if (!skipGraphKeys[0][0].contains(o)) {
 containsAll = false;
 break;
 }
 }
 return containsAll;
 }

 /**
 * @see java.util.Collection#addAll(java.util.Collection)
 */
 public boolean addAll(Collection c) {
 return false;
 }

 /**
 * @see java.util.Collection#removeAll(java.util.Collection)
 */
 public boolean removeAll(Collection c) {
 return false;
 }

 /**
 * @see java.util.Collection#retainAll(java.util.Collection)
 */
 public boolean retainAll(Collection c) {
 return false;
 }

 @SuppressWarnings("unchecked")
 public Object[] toArray(Object[] arg0) {
 return null;
 }
}

106

//StandardSkipGraph Class
package gjb.thesis.model;

import java.util.ArrayList;
import java.util.LinkedList;

/**
 * Standard sub-class of the Abstract Skip Graph Class
 * @author Greg Brault
 */
public class StdSkipGraph extends SkipGraph {
 private boolean debug = false;

 public StdSkipGraph(int numLevels) {
 super();
 this.numLevels = numLevels;
 initGraph();
 clear();
 }

 public void setDebug(boolean debug) {
 this.debug = debug;
 }

 /**
 * Executes a range query in the skip graph that is configured in the standard
 * way (Deterministic z-ordered keys and random membership vectors)
 * @param minKey - Inclusive minimum key value to look for
 * @param maxKey - Inclusive maximum key value to look for
 * @param startKey - node Id to start with
 * @return
 */
 @Override
 public LinkedList<Node> rangeQuery(Node startNode, LinkedList<Node>
includedNodes, LinkedList preDist, LinkedList postDist, int xMin, int yMin, int
xMax, int yMax) {
 int zOrderMin = Node.zOrder(xMin, yMin);
 int zOrderMax = Node.zOrder(xMax, yMax);
 LinkedList<Node> results = new LinkedList<Node>();
 if (mxMap.containsKey(startNode)) {
 if (debug) System.out.println("Starting Std query at node " + startNode.getId() +
" at L" + (numLevels-1));
 includedNodes.add(startNode);
 nextNodeRangeQuery(startNode, null, zOrderMin, zOrderMax, results,
includedNodes, preDist, postDist, numLevels -1);

107

 return results;
 } else return results;
 }

 @SuppressWarnings("unchecked")
 private LinkedList<Node> nextNodeRangeQuery(Node root, Node from, int
zOrderMin, int zOrderMax, LinkedList<Node> results,
LinkedList<Node> includedNodes, LinkedList preDist, LinkedList postDist, int
level) {
 int j;
 if ((root.getKey() >= zOrderMin) && (root.getKey() <= zOrderMax)) {
 // In range. Drop down to lowest level and collect all nodes that are in range
 // add ourselves
 results.add(root);
 ArrayList<Node> baseList = skipGraphKeys[0][0];
 if (debug) System.out.println("In range. Adding Node " + root.getId() + " at
L0.");
 // go Right
 j = skipGraphKeys[0][0].indexOf(root);
 j++;
 while (j < skipGraphKeys[0][0].size() &&
skipGraphKeys[0][0].get(j).getKey()<=zOrderMax){

 if (debug) {
 System.out.println("In range. Contacting Node " +
skipGraphKeys[0][0].get(j).getId() + " at L0.");
 System.out.println("In range. Adding Node " +
skipGraphKeys[0][0].get(j).getId() + " at L0.");
 }
 results.add(skipGraphKeys[0][0].get(j));
 includedNodes.add(skipGraphKeys[0][0].get(j));
 postDist.add(Math.sqrt(Math.pow(baseList.get(j).getCoords()[0] -
baseList.get(j- 1).getCoords()[0], 2) +
Math.pow(baseList.get(j).getCoords()[1] - baseList.get(j-
 1).getCoords()[1], 2)));
 j++;
 }
 // add border contact if we're not at the end of the list
 if (j < skipGraphKeys[0][0].size() && skipGraphKeys[0][0].get(j) != from) {
 if (debug) {
 System.out.println("Out of range. Contacting Node " +
 skipGraphKeys[0][0].get(j).getId() + " at L0.");
 }
 includedNodes.add(skipGraphKeys[0][0].get(j));

108

 postDist.add(Math.sqrt(Math.pow(baseList.get(j).getCoords()[0] -
baseList.get(j- 1).getCoords()[0], 2) +
Math.pow(baseList.get(j).getCoords()[1] - baseList.get(j- 2)));
 }
 // go Left
 j = skipGraphKeys[0][0].indexOf(root);
 j--;
 while (j >= 0 && skipGraphKeys[0][0].get(j).getKey() >= zOrderMin) {
 if (debug) {
 System.out.println("In range. Contacting Node " +
skipGraphKeys[0][0].get(j).getId() + " at L0.");
 System.out.println("In range. Adding Node " +
skipGraphKeys[0][0].get(j).getId() + " at L0.");
 }
 results.add(skipGraphKeys[0][0].get(j));
 includedNodes.add(skipGraphKeys[0][0].get(j));
 postDist.add(Math.sqrt(Math.pow(baseList.get(j).getCoords()[0] -
 baseList.get(j+1).getCoords()[0], 2) +
Math.pow(baseList.get(j).getCoords()[1] -
 baseList.get(j+1).getCoords()[1], 2)));
 j--;
 }
 // add border contact if we're not at the beginning of the list
 if (j >= 0 && skipGraphKeys[0][0].get(j) != from) {
 if (debug) {
 System.out.println("Out of range. Contacting Node " +
 skipGraphKeys[0][0].get(j).getId() + " at L0.");
 }
 includedNodes.add(skipGraphKeys[0][0].get(j));
 postDist.add(Math.sqrt(Math.pow(baseList.get(j).getCoords()[0] -
 baseList.get(j+1).getCoords()[0], 2) +
Math.pow(baseList.get(j).getCoords()[1] -
 baseList.get(j+1).getCoords()[1], 2)));
 }
 return results;
 } else if (root.getKey() < zOrderMin) {
 // go right
 ArrayList<Node> list = skipGraphKeys[level][getMXleft(level, root)];
 j = list.indexOf(root);
 j++;
 while (j < list.size() && list.get(j).getKey() < zOrderMin) {
 if (debug) System.out.println("Contacting Node " + list.get(j).getId() + " on
L" + level);
 includedNodes.add(list.get(j));

109

 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] - list.get(j-
1).getCoords()[0], 2) +
 Math.pow(list.get(j).getCoords()[1] - list.get(j-1).getCoords()[1], 2)));
 j++;
 }
 if (j == list.size())
 if (level > 0)
 if (j == 1)
 return nextNodeRangeQuery(list.get(j-1), from, zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, level - 1);
 else return nextNodeRangeQuery(list.get(j-1), list.get(j-2), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, level -
1);
 else return results;
 else {
 if (debug) System.out.println("Contacting Node " + list.get(j).getId() + " on
L" + level);
 includedNodes.add(list.get(j));
 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] - list.get(j-
1).getCoords()[0], 2) +
 Math.pow(list.get(j).getCoords()[1] - list.get(j-1).getCoords()[1], 2)));
 if (list.get(j).getKey() <= zOrderMax)
 return nextNodeRangeQuery(list.get(j), list.get(j-1), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, 0);
 else if (level == 0)
 return results;
 else if (j == 1)
 return nextNodeRangeQuery(list.get(j-1), from, zOrderMin, zOrderMax,
results, includedNodes, preDist, postDist, level - 1);
 else return nextNodeRangeQuery(list.get(j-1), list.get(j-2), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, level - 1);
 }
 } else {
 // go left
 ArrayList<Node> list = skipGraphKeys[level][getMXleft(level, root)];
 j = list.indexOf(root);
 j--;
 while (j >= 0 && list.get(j).getKey() > zOrderMax) {
 if (debug) System.out.println("Contacting Node " + list.get(j).getId() + " at L"
+ level);
 includedNodes.add(list.get(j));
 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] -
list.get(j+1).getCoords()[0], 2) +
 Math.pow(list.get(j).getCoords()[1] - list.get(j+1).getCoords()[1], 2)));
 j--;

110

 }
 if (j < 0)
 if (level > 0)
 if (list.size() == 1)
 return nextNodeRangeQuery(list.get(0), from, zOrderMin, zOrderMax,
results, includedNodes, preDist, postDist, level - 1);
 else return nextNodeRangeQuery(list.get(0), list.get(1), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist,level -
1);
 else return results;
 else {
 if (debug) System.out.println("Contacting Node " + list.get(j).getId() + " at L"
+ level);
 includedNodes.add(list.get(j));
 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] -
list.get(j+1).getCoords()[0], 2) +
 Math.pow(list.get(j).getCoords()[1] - list.get(j+1).getCoords()[1], 2)));
 if (list.get(j).getKey() >= zOrderMin)
 return nextNodeRangeQuery(list.get(j), list.get(j+1), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, 0);
 else if (level == 0)
 return results;
 else if (j == (list.size() - 2))
 return nextNodeRangeQuery(list.get(j+1), from, zOrderMin, zOrderMax,
results, includedNodes, preDist, postDist, level - 1);
 else return nextNodeRangeQuery(list.get(j+1), list.get(j+2), zOrderMin,
zOrderMax, results, includedNodes, preDist, postDist, level - 1);
 }
 }
 }

 /**
 * To calculate total number of messages for a node move in a Standard SkipGraph
with
 * deterministic keys based on z-order of geo coordinates and random membership
vectors,
 * we must include:
 * 1) Link re-assignment messages due to the now-absent node
 * 2) Messages incurred by re-adding the node at each level. This requires the
 * standard query-method to be used, since a new key has been generated based
 * on the z-order of its new geo coordinates
 */
 @Override
 public int updateNode(Node toUpdate) {
 int messages = 0;

111

 ArrayList<Node> list = null;
 int index = 0;
 // reassign links for the surrounding nodes in each list at each level
 // assume old link will fail when trying to communicate and no response
 /*
 for (int i = 0; i < numLevels; i++) {
 list = skipGraphKeys[i][getMXleft(i, toUpdate)];
 index = list.indexOf(toUpdate);
 if ((index-1) >=0)
 messages += 2; // BuddyRequest + BuddyAck
 if (index+1 < list.size())
 messages += 2; // BuddyRequest + BuddyAck

 }*/
 // remove the node
 remove(toUpdate);
 // re-add the node based on nodes new key and geo-position
 // For a Standard SkipGraph, with deterministic keys based on geo
 // position and random MXs, a full add needs to take place
 add(toUpdate);
 messages += numMsgsForLastAdd;
 return messages;
 }
}

//MultiDimensionalSkipGraph Class
package gjb.thesis.model;

import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;

/**
 * Multi-Dimensional sub-class of the Abstract Skip Graph Class
 * @author Greg Brault
 */
public class MultiSkipGraph extends SkipGraph {

 public MultiSkipGraph(int numLevels) {
 super();
 this.numLevels = numLevels;
 initGraph();
 clear();
 }

112

 /**
 * Executes a range query in the skip graph that is configured in the proposed
 * way (Random keys and Deterministic z-ordered membership vectors)
 * @param minKey - Inclusive minimum key value to look for (z-ordered)
 * @param maxKey - Inclusive maximum key value to look for (z-ordered)
 * @param startKey - node Id to start with
 * @return
 */
 public LinkedList<Node> rangeQuery(Node startNode, LinkedList<Node>
includedNodes, LinkedList preDist, LinkedList postDist, int xMin, int yMin, int xMax,
int yMax) {
 int zOrderMin = Node.zOrder(xMin, yMin);
 int zOrderMax = Node.zOrder(xMax, yMax);
 int mxPfxMask = (Node.getMxPrefixMask(zOrderMin, zOrderMax) >>> (32 -
2*numLevels + 2));
 int mxPfx = (Node.getMxPrefix(zOrderMin, zOrderMax) >>> (32 - 2*numLevels
+ 2));
 LinkedList<Node> results = new LinkedList<Node>();
 //System.out.println("z-order min: " + Integer.toBinaryString(zOrderMin) +
 // ", z-order max: " + Integer.toBinaryString(zOrderMax));
 //System.out.println("mxPrefixMask: " + Integer.toBinaryString(mxPfxMask) + ",
mxPfx: " + Integer.toBinaryString(mxPfx));
 if (debug)
 System.out.println("Starting Gjb query at node " + startNode.getId() + " on
L0.");
 includedNodes.add(startNode);
 recurseRangeQuery(startNode, results, includedNodes, preDist, postDist,
zOrderMin, zOrderMax, mxPfx, mxPfxMask, 0);
 return results;
 }

 /**
 * Recursive routine
 * @param node - current node we're at
 * @param results - common data list holding results
 * @param pfx - mx prefix of the current node at the current level "level"
 * @param pfxMask - bitmask indicating which bits are involved in matching.
 * @param level - our current level
 *
 * Returns when all paths for all levels have been explored
 */
 @SuppressWarnings("unchecked")

113

 private void recurseRangeQuery(Node node, LinkedList<Node> results,
LinkedList<Node> includedNodes, LinkedList preDist, LinkedList
postDist, int zOrderMin, int zOrderMax, int pfx, int pfxMask, int level) {
 boolean found11 = false;
 int j;
 // this is the prefix that we are comparing to at this particular level
 int thisPfx = (pfx >>> ((2*numLevels) - (2*(level+1)) - 2));
 // this is the prefix mask that we are using at this particular level
 int thisPfxMask = (pfxMask >>> ((2*numLevels) - (2*(level+1)) - 2));
 int nodeMx = getMXleft(level, node);
 ArrayList<Node> list = skipGraphKeys[level][nodeMx];

 // Stop Condition #1 : Highest level?
 if (level + 1 == numLevels) {
 // and full prefix match based on prefix mask?
 if ((nodeMx & pfxMask) == (pfx & pfxMask)) {
 // we have to traverse the entire list and check whether the nodes are inside
the query range!
 // possibly include ourself
 int nodeZOrder = Node.zOrder(node.getCoords()[0], node.getCoords()[1]);
 if (nodeZOrder >= zOrderMin && nodeZOrder <= zOrderMax) {
 if (debug)
 System.out.println("Adding Node " + node.getId() + " at maxLevel L"
+ level);
 results.add(node);
 }
 // go right, possibly including the nodes we see
 j = list.indexOf(node);
 j++;
 while (j < list.size()) {
 nodeZOrder = Node.zOrder(list.get(j).getCoords()[0],
list.get(j).getCoords()[1]);
 if (debug)
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
right at maxLevel L" + level);
 if (nodeZOrder >= zOrderMin && nodeZOrder <= zOrderMax) {
 if (debug)
 System.out.println("Adding Node " + list.get(j).getId() + " at
maxLevel L" + level);
 results.add(list.get(j));
 }
 includedNodes.add(list.get(j));
 postDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] - list.get(j-
1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] -
list.get(j-1).getCoords()[1], 2)));

114

 j++;
 }
 // go left
 j = list.indexOf(node);
 j--;
 while (j >= 0) {
 nodeZOrder = Node.zOrder(list.get(j).getCoords()[0],
list.get(j).getCoords()[1]);
 if (debug)
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
left at maxLevel L" + level);
 if (nodeZOrder >= zOrderMin && nodeZOrder <= zOrderMax) {
 if (debug)
 System.out.println("Adding Node " + list.get(j).getId() + " at
maxLevel L" + level);
 results.add(list.get(j));
 }
 includedNodes.add(list.get(j));
 postDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] -
list.get(j+1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] -
list.get(j+1).getCoords()[1], 2)));
 j--;
 }
 return;
 } else return; // we're at the highest level and no match, return
 }
 // not at the highest level yet, switch between the two bits being scrutinized
 switch (thisPfxMask & 0x03) {
 case 3: // exact match for pfx
 // check if we are a match
 if (getMXleft(level + 1, node) == thisPfx) {
 if (debug)
 System.out.println("Found Node " + node.getId() + " immediately at L" +
level);
 recurseRangeQuery(node, results, includedNodes, preDist, postDist,
zOrderMin, zOrderMax, pfx, pfxMask, level + 1);
 } else {
 found11 = false;
 j = list.indexOf(node);
 // go right, checking for match
 j++;
 while ((j < list.size()) && !found11) {
 if (debug)
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
right at L" + level);

115

 includedNodes.add(list.get(j));
 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] - list.get(j-
1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] -
list.get(j-1).getCoords()[1], 2)));
 if (getMXleft(level + 1, list.get(j)) == thisPfx) {
 found11 = true;
 //System.out.println("11: Found rightward, node " + list.get(j).getId() +
", level " + level);
 recurseRangeQuery(list.get(j), results, includedNodes, preDist,
postDist, zOrderMin, zOrderMax,pfx, pfxMask, level + 1);
 } else j++;
 }
 j = list.indexOf(node);
 j--;
 // go left, checking for match
 while ((j >= 0) && !found11) {
 if (debug)
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
left at L" + level);
 includedNodes.add(list.get(j));
 preDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] -
list.get(j+1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] -
list.get(j+1).getCoords()[1], 2)));
 if (getMXleft(level + 1, list.get(j)) == thisPfx) {
 found11 = true;
 //System.out.println("11: Found leftward, node " + list.get(j).getId() +
", level " + level);
 recurseRangeQuery(list.get(j), results, includedNodes, preDist,
postDist, zOrderMin, zOrderMax, pfx, pfxMask, level + 1);
 } else j--;
 }
 }
 break;
 case 2: // 10. exact match for left bit of pfx, right bit don't care
 case 1:
 case 0:
 // 00. Both left and right bits don't care. For now, return all nodes in this sub
quadrant
 // include ourself
 if (debug)
 System.out.println("Adding Node " + node.getId() + " in X don't care list X at
L" + level);
 results.add(node);
 // go right
 j = list.indexOf(node);

116

 j++;
 while (j < list.size()) {
 if (debug) {
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
rightward at X don't care list X at L" + level);
 System.out.println("Adding Node " + list.get(j).getId() + " in X don't care
list X at L" + level);
 }
 results.add(list.get(j));
 includedNodes.add(list.get(j));
 postDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] - list.get(j-
1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] - list.get(j-
1).getCoords()[1], 2)));
 j++;
 }
 // go left
 j = list.indexOf(node);
 j--;
 while (j >= 0) {
 if (debug) {
 System.out.println("Contacting Node " + list.get(j).getId() + " heading
rightward at X don't care list X at L" + level);
 System.out.println("Adding Node " + list.get(j).getId() + " in X don't care
list X at L" + level);
 }
 results.add(list.get(j));
 includedNodes.add(list.get(j));
 postDist.add(Math.sqrt(Math.pow(list.get(j).getCoords()[0] -
list.get(j+1).getCoords()[0], 2) + Math.pow(list.get(j).getCoords()[1] -
list.get(j+1).getCoords()[1], 2)));
 j--;
 }
 }
 }

 /**
 * To calculate total number of messages for a node move in a Multi-Dim SkipGraph
 * with a random key and deterministic membership vector based on z-order of the
 * geo coordinates, we must include:
 * 1) Position in base level will not change because the key is the same, it's only
 * the coordinates that have changed. Therefore, we do not need to do the standard
 * query from the normal add process
 * 2) The full membership vector has changed because our geo coordinates have
changed.
 * Therefore at each level we must change membership vector lists.

117

 */
 @SuppressWarnings("unchecked")
 @Override
 public int updateNode(Node toUpdate) {
 // This code borrowed from the "add(Node)" method, but without the initial base
 // level query since we already know where we are in that list.
 // Redo the mx mapping
 mxMap.remove(toUpdate);
 mxMap.put(toUpdate, toUpdate.getMX());
 int mx;
 int messages = 0;
 // add ourselves to the appropriate membership vector at each level, starting
 // with level 1
 for (int level = 1; level < numLevels; level++) {
 mx = getMXleft(level, toUpdate);
 int i = 0;
 if (skipGraphKeys[level][mx] == null) {
 skipGraphKeys[level][mx] = new ArrayList<Node>();
 } else {
 i = Collections.binarySearch((List) skipGraphKeys[level][mx], toUpdate);
 }
 if (i < 0 || (i == 0 && skipGraphKeys[level][mx].size() == 0)) {
 skipGraphKeys[level][mx].add(toUpdate);
 Collections.sort(skipGraphKeys[level][mx]);
 }
 messages += findBuddies(toUpdate, level, mx);
 }
 return messages;
 }
}

//AbstractCreate Class
package gjb.thesis.strategy;

import java.util.Random;

import gjb.thesis.model.Node;

/**
 * Abstract Node creation class. Sub-classed into
 * RandomKey or RandomMX.
 * @author Greg Brault
 */
public abstract class AbstractCreate {
 static Random f_random = null;

118

 abstract public int setMX(Node mote);
 abstract public Integer setKey(Node mote);
}

//KeyMXCreation Class
package gjb.thesis.strategy;

/**
 * The interface used for the sub-classes of AbstractCreate
 * (RandomKey and RandomMX)
 * @author Greg Brault
 */
public interface KeyMXCreation {
 public int getMX();
 public Integer getKey();
 public void setMX();
 public void setKey();
}

//RandomKey Class
package gjb.thesis.strategy;

import java.util.Random;

import gjb.thesis.model.Node;

/**
 * Configures the node for Random Key : Deterministic Membership Vector.
 * The idea is to set the membership vector according to a z-ordering of
 * the coordinates of the node (x,y, and/or z), and then choose the node's
 * key randomly.
 * @author Greg Brault
 */
public class RandomKey extends AbstractCreate {
 public RandomKey(int seed) {
 if (f_random == null)
 //f_random = new Random(seed);
 f_random = new Random();
 }

 @Override
 public int setMX(Node mote) {
 int x = mote.getCoords()[0]; // x coordinate
 int y = mote.getCoords()[1]; // y coordinate
 //int z = mote.getCoords()[2]; // z coordinate

119

 int mx = Node.zOrder(x,y);
 mx >>>= (32 - 2*mote.getNumLevels() + 2);
 return mx;
 }

 @Override
 public Integer setKey(Node node) {
 return new Integer(f_random.nextInt());
 //int[] coords = node.getCoords();
 // key is the x-value of the coordinate (x,y,z)
 //return new Integer(coords[0]);
 }
}

//RandomMX Class
package gjb.thesis.strategy;

import java.util.Random;
import gjb.thesis.model.Node;

/**
 * Configures the node for Random Key : Deterministic Membership Vector.
 * The idea is to set the membership vector according to a z-ordering of
 * the coordinates of the node (x,y, and/or z), and then choose the node's
 * key randomly.
 * @author Greg Brault
 */
public class RandomMX extends AbstractCreate {
 public RandomMX(int seed) {
 if (f_random == null)
 //f_random = new Random(seed);
 f_random = new Random();
 }
 @Override
 public int setMX(Node mote) {
 int mx = f_random.nextInt();
 mx >>>= (32 - 2*mote.getNumLevels() + 2);
 return mx;
 }

 @Override
 public Integer setKey(Node node) {
 int x = node.getCoords()[0]; // x coordinate
 int y = node.getCoords()[1]; // y coordinate
 //int z = mote.getCoords()[2]; // z coordinate

120

 int key = Node.zOrder(x,y); // initialize m(x)
 //key >>>= (32 - 2*SkipGraph.MAX_SKIP_LEVELS + 2);
 return new Integer(key);
 }
}

121

Bibliography

[AsS03] Aspnes, James., Shah, Gauri. “Skip Graphs”. Proceedings of the 14th
 ACM/SIAM Symposium on Discrete Algorithms, 384-393. 2003.

[Aug06] Augeri, Christopher. “Using Spectral Analysis and Trie-Based Skip Graphs
 to Enable Multi-Dimensional Queries In Mobile 3-D Wireless Networks”.
 Air Force Institute of Technology, 2007.

[AuM05] Augeri, Christopher., Mullins, Barry. “Data-Centric Indexing and Routing”.

Air Force Institute of Technology, 2005.

[Ecl07] Eclipse IDE. URL http://www.eclipse.org/

[EGS04] Eppstein, David., Goodrich, Michael T., Sun, Jonathan Z. “The Skip
 Quadtree: A Simple Dynamic Data Structure for Multidimensional Data”.
 2004.

[FiB74] Finkel, R. A., Bentley, J.L. “Quad trees: a data structure for retrieval on
 composite keys”. Acta Informatica19, 4(1):1-9, 1974

[Fre04] Freeman, Eric., Freeman, Elisabeth., Sierra, K., and Bates, B. Head First
 Design Patterns. Sebastopol, CA: O’Reilly, 2004.

[Jav07] Java Programming Language. URL http://java.sun.com

[HJS04] Harvey, Nicholas J.A., Jones, Michael B., Saroiu, Stefan., Theimer, Marvin.,
 Wolman, Alec. “SkipNet: A Scalable Overlay Network with Practical
 Locality Properties”. 2004

[Haw90] Hawkins, T. Dictionary of Scientific Biography. New York, 1990.

[KaW05] Karl, Holger., Willig, Andreas. “Protocols and Architectures for Wireless
 Sensor Networks”. West Sussex, England: Wiley, 2005.

[LEG05] Arge, Lars., Eppstein, David., Goodrich, Michael T. “Skip-webs: efficient
 distributed data structures for multi-dimensional data sets”. ACM
 SIGACT-SIGOPS Symposium on Principles of Distributed Computing
 (PODC), 69-76. ACM Press, New York, NY, 2005.

[Opn07] Opnet Simulation Software. URL http://www.opnet.com

[Ore82] Orenstein, J.A. “Multidimensional tries used for associative searching”.
 Inform. Process. Lett., 13:150-157, 1982.

122

http://java.sun.com/
http://www.opnet.com/

123

[PBD03] Perkins, C., Belding-Royer, E., Das, S. “Ad hoc On-Demand Distance Vector
(AODV) Routing”, July 2003. URL http://www.ietf.org/rfc/rfc3561.txt.

[PeB94] Perkins, Charles E., Bhagwat, Pravin. “Highly Dynamic Destination-
 Sequenced Distance-Vector Routing (DSDV) for Mobile Computers”. ACM
 SIGCOMM’94 Conference on Communications Architectures, Protocols and
 Applications, 1994

[Pug90] Pugh, William. “Skip Lists: a probabilistic alternative to balanced trees”.
 Communications of the ACM, 33(6):668-676, 1990. ISSN 0001-0782.

[PWW02] Ptak, Stephen., Webster, Charles R. Jr., Wilson, Tony W. “Effective
 Decision-Making Processes for the Joint Force Commander. Air Land and
 Sea Bulletin.

[RoM04] Romer, Kay., Mattern, Friedemann. “The Design Space of Wireless Sensor
 Networks. IEEE Wireless Communications, Dec 2004.

[Sag94] Sagan, Hans. Space-Filling Curves. Springer-Verlag, New York, NY, 1994.

[Sam06] Samet, Hanan. Foundations of Multidimensional and Metric Data Structures.
 San Francisco: Morgan Kaufmann Publishers, 2006.

[UML05] Unified Modeling Language: Superstructure, version 2.0. URL
 http://www.omg.org/docs/formal/05-07-04.pdf

[ZhG04] Zhao, Feng., Guibas, Leonidas. Wireless Sensor Networks: An Information
 Processing Approach. San Francisco, CA: Morgan Kaufmann Publishers,
 2004.

http://www.ietf.org/rfc/rfc3561.txt
http://www.omg.org/docs/formal/05-07-04.pdf

 Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To)

22-03-2007 Master’s Thesis March 2006 – March 2007

5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE

5b. GRANT NUMBER

MULTI-DIMENSIONAL RANGE QUERYING USING A
MODIFICATION OF THE SKIP GRAPH

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Brault, Gregory J., Captain, USAF

5f. WORK UNIT NUMBER

8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)

 REPORT NUMBER

 AFIT/GE/ENG/07-04

 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

10. SPONSOR/MONITOR’S
ACRONYM(S)
AFCA/ENAN

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Scott Gardner, P.E.
 Air Force Communications Agency/Dynamic Network 11. SPONSOR/MONITOR’S REPORT

NUMBER(S) Analysis Division
 Scott AFB, IL 62225
 Scott.gardner.2@scott.af.mil, DSN 779-6794
12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Skip graphs are an application layer-based distributed routing data structure that can be used in a sensor network to facilitate
user queries of data collected by the sensor nodes. This research investigates the impact of a proposed modification to the skip
graph proposed by Aspnes and Shah.
 Nodes contained in a standard skip graph are sorted by their key value into successively smaller groups based on random
membership vectors computed locally at each node. The proposed modification inverts the node key and membership vector
roles, where group membership is computed deterministically and node keys are computed randomly.
 Both skip graph types are modeled in Java. Range query and node mobility simulations are performed. The number of skip
graph levels, total node count, and query precision are varied for query simulations; number of levels and total node count is
varied for the mobility simulation. Query performance is measured by the number of skip graph messages used to execute the
query while mobility performance is measured by the number of messages transmitted to maintain skip graph coherence.
 When the number of levels is limited and query precision is low, or when query precision is matched by the number of levels
in the skip graph and total network node counts are increased, the modified skip graph transmits fewer messages to execute the
query. Furthermore, fewer update messages are needed to fix lost node references due to mobile nodes.
15. SUBJECT TERMS
distributed sensor network (DSN), skip list, skip graph, multi-dimensional, range query, distributed query, space-
filling curve.
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Barry E. Mullins, Ph.D. (ENG)

a.
REPORT

17. LIMITATION
OF

18.
NUMBER

 ABSTRACT OF 19b. TELEPHONE NUMBER (Include area code) b.
ABSTRACT

U

c. THIS
PAGE PAGES

(937) 255-3636, ext 7979
136 UU U U (Barry.Mullins@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	AIR FORCE INSTITUTE OF TECHNOLOGY
	
	Abstract
	Acknowledgments
	Table of Contents
	
	List of Figures
	List of Tables
	Vita
	I. Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Thesis Layout

	II. Literature Review
	2.1 Distributed Sensor Networks
	2.2 Skip Lists and Skip Graphs
	2.3 Distributed Querying
	2.4 Mobility
	2.5 Related Work
	2.6 Summary

	III. Methodology
	3.1 Problem Statement
	3.2 System Scope
	3.3 System Model
	3.4 Performance Metrics
	3.5 Parameters
	3.6 Factors
	3.7 Experimental Design
	3.8 Evaluation Technique
	3.9 Summary

	IV. Analysis and Results
	4.1 Model Validation
	4.2 Analysis of Query Execution
	4.3 Analysis of Mobility
	4.4 Summary

	V. Conclusions and Recommendations
	5.1 Problem Summary
	5.2 Summary of Conclusions Drawn From Results
	5.3 Significance of Research
	5.4 Recommendations for Future Research
	5.5 Summary

	 Appendix A: Java Source Code
	Bibliography

